Solve for x
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
\left(\sqrt{16+x^{2}}\right)^{2}=\left(x+1\right)^{2}
Square both sides of the equation.
16+x^{2}=\left(x+1\right)^{2}
Calculate \sqrt{16+x^{2}} to the power of 2 and get 16+x^{2}.
16+x^{2}=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
16+x^{2}-x^{2}=2x+1
Subtract x^{2} from both sides.
16=2x+1
Combine x^{2} and -x^{2} to get 0.
2x+1=16
Swap sides so that all variable terms are on the left hand side.
2x=16-1
Subtract 1 from both sides.
2x=15
Subtract 1 from 16 to get 15.
x=\frac{15}{2}
Divide both sides by 2.
\sqrt{16+\left(\frac{15}{2}\right)^{2}}=\frac{15}{2}+1
Substitute \frac{15}{2} for x in the equation \sqrt{16+x^{2}}=x+1.
\frac{17}{2}=\frac{17}{2}
Simplify. The value x=\frac{15}{2} satisfies the equation.
x=\frac{15}{2}
Equation \sqrt{x^{2}+16}=x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}