Evaluate
2\sqrt{6}-13\sqrt{3}\approx -17.617681013
Share
Copied to clipboard
5\sqrt{6}-3\sqrt{147}-\sqrt{54}+\sqrt{192}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
5\sqrt{6}-3\times 7\sqrt{3}-\sqrt{54}+\sqrt{192}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
5\sqrt{6}-21\sqrt{3}-\sqrt{54}+\sqrt{192}
Multiply -3 and 7 to get -21.
5\sqrt{6}-21\sqrt{3}-3\sqrt{6}+\sqrt{192}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
2\sqrt{6}-21\sqrt{3}+\sqrt{192}
Combine 5\sqrt{6} and -3\sqrt{6} to get 2\sqrt{6}.
2\sqrt{6}-21\sqrt{3}+8\sqrt{3}
Factor 192=8^{2}\times 3. Rewrite the square root of the product \sqrt{8^{2}\times 3} as the product of square roots \sqrt{8^{2}}\sqrt{3}. Take the square root of 8^{2}.
2\sqrt{6}-13\sqrt{3}
Combine -21\sqrt{3} and 8\sqrt{3} to get -13\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}