Evaluate
\sqrt{6}\approx 2.449489743
Share
Copied to clipboard
5\sqrt{6}-2\sqrt{\frac{3}{2}}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
5\sqrt{6}-2\times \frac{\sqrt{3}}{\sqrt{2}}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
5\sqrt{6}-2\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
5\sqrt{6}-2\times \frac{\sqrt{3}\sqrt{2}}{2}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
The square of \sqrt{2} is 2.
5\sqrt{6}-2\times \frac{\sqrt{6}}{2}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
5\sqrt{6}-\sqrt{6}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Cancel out 2 and 2.
4\sqrt{6}-3\sqrt{\frac{2}{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Combine 5\sqrt{6} and -\sqrt{6} to get 4\sqrt{6}.
4\sqrt{6}-3\times \frac{\sqrt{2}}{\sqrt{3}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
4\sqrt{6}-3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{12}{\sqrt{6}-\sqrt{24}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{6}-3\times \frac{\sqrt{2}\sqrt{3}}{3}+\frac{12}{\sqrt{6}-\sqrt{24}}
The square of \sqrt{3} is 3.
4\sqrt{6}-3\times \frac{\sqrt{6}}{3}+\frac{12}{\sqrt{6}-\sqrt{24}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{6}-\sqrt{6}+\frac{12}{\sqrt{6}-\sqrt{24}}
Cancel out 3 and 3.
3\sqrt{6}+\frac{12}{\sqrt{6}-\sqrt{24}}
Combine 4\sqrt{6} and -\sqrt{6} to get 3\sqrt{6}.
3\sqrt{6}+\frac{12}{\sqrt{6}-2\sqrt{6}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
3\sqrt{6}+\frac{12}{-\sqrt{6}}
Combine \sqrt{6} and -2\sqrt{6} to get -\sqrt{6}.
3\sqrt{6}+\frac{12\sqrt{6}}{-\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{12}{-\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
3\sqrt{6}+\frac{12\sqrt{6}}{-6}
The square of \sqrt{6} is 6.
3\sqrt{6}+\frac{2\sqrt{6}}{-1}
Cancel out 6 in both numerator and denominator.
3\sqrt{6}-2\sqrt{6}
Anything divided by -1 gives its opposite.
\sqrt{6}
Combine 3\sqrt{6} and -2\sqrt{6} to get \sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}