Evaluate
\frac{\sqrt{30}}{4}\approx 1.369306394
Quiz
Arithmetic
5 problems similar to:
\sqrt { 15 } \div \sqrt { 12 } \times \sqrt { \frac { 3 } { 2 } }
Share
Copied to clipboard
\frac{\sqrt{15}}{2\sqrt{3}}\sqrt{\frac{3}{2}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{15}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\sqrt{\frac{3}{2}}
Rationalize the denominator of \frac{\sqrt{15}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{15}\sqrt{3}}{2\times 3}\sqrt{\frac{3}{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\sqrt{5}\sqrt{3}}{2\times 3}\sqrt{\frac{3}{2}}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}}{2\times 3}\sqrt{\frac{3}{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{5}}{6}\sqrt{\frac{3}{2}}
Multiply 2 and 3 to get 6.
\frac{1}{2}\sqrt{5}\sqrt{\frac{3}{2}}
Divide 3\sqrt{5} by 6 to get \frac{1}{2}\sqrt{5}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{3}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{1}{2}\sqrt{5}\times \frac{\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}}{2\times 2}\sqrt{5}
Multiply \frac{1}{2} times \frac{\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}}{4}\sqrt{5}
Multiply 2 and 2 to get 4.
\frac{\sqrt{6}\sqrt{5}}{4}
Express \frac{\sqrt{6}}{4}\sqrt{5} as a single fraction.
\frac{\sqrt{30}}{4}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}