Solve for t
t=-2
Share
Copied to clipboard
\left(\sqrt{13-10t}\right)^{2}=\left(\sqrt{11-11t}\right)^{2}
Square both sides of the equation.
13-10t=\left(\sqrt{11-11t}\right)^{2}
Calculate \sqrt{13-10t} to the power of 2 and get 13-10t.
13-10t=11-11t
Calculate \sqrt{11-11t} to the power of 2 and get 11-11t.
13-10t+11t=11
Add 11t to both sides.
13+t=11
Combine -10t and 11t to get t.
t=11-13
Subtract 13 from both sides.
t=-2
Subtract 13 from 11 to get -2.
\sqrt{13-10\left(-2\right)}=\sqrt{11-11\left(-2\right)}
Substitute -2 for t in the equation \sqrt{13-10t}=\sqrt{11-11t}.
33^{\frac{1}{2}}=33^{\frac{1}{2}}
Simplify. The value t=-2 satisfies the equation.
t=-2
Equation \sqrt{13-10t}=\sqrt{11-11t} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}