Evaluate
\frac{\sqrt{13}\left(x^{3}+1\right)\left(x-1\right)^{5}}{x^{4}}
Factor
\frac{\sqrt{13}\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)^{5}}{x^{4}}
Graph
Share
Copied to clipboard
\sqrt{13}\left(x+x^{4}\right)\left(\frac{x}{x}-\frac{1}{x}\right)^{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\sqrt{13}\left(x+x^{4}\right)\times \left(\frac{x-1}{x}\right)^{5}
Since \frac{x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\sqrt{13}\left(x+x^{4}\right)\times \frac{\left(x-1\right)^{5}}{x^{5}}
To raise \frac{x-1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\sqrt{13}\left(x-1\right)^{5}}{x^{5}}\left(x+x^{4}\right)
Express \sqrt{13}\times \frac{\left(x-1\right)^{5}}{x^{5}} as a single fraction.
\frac{\sqrt{13}\left(x-1\right)^{5}\left(x+x^{4}\right)}{x^{5}}
Express \frac{\sqrt{13}\left(x-1\right)^{5}}{x^{5}}\left(x+x^{4}\right) as a single fraction.
\frac{\sqrt{13}x\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)^{5}}{x^{5}}
Factor the expressions that are not already factored.
\frac{\sqrt{13}\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)^{5}}{x^{4}}
Cancel out x in both numerator and denominator.
\frac{\sqrt{13}x^{8}-5\sqrt{13}x^{7}+10\sqrt{13}x^{6}-9\sqrt{13}x^{5}+9\sqrt{13}x^{3}-10\sqrt{13}x^{2}+5\sqrt{13}x-\sqrt{13}}{x^{4}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}