\sqrt { 128 + \sqrt { 260 - \sqrt { 16 } } } = \text { feedt } ?
Solve for d
d=\frac{12}{e^{2}ft}
t\neq 0\text{ and }f\neq 0
Solve for f
f=\frac{12}{e^{2}dt}
t\neq 0\text{ and }d\neq 0
Share
Copied to clipboard
\sqrt{128+\sqrt{260-\sqrt{16}}}=fe^{2}dt
Multiply e and e to get e^{2}.
\sqrt{128+\sqrt{260-4}}=fe^{2}dt
Calculate the square root of 16 and get 4.
\sqrt{128+\sqrt{256}}=fe^{2}dt
Subtract 4 from 260 to get 256.
\sqrt{128+16}=fe^{2}dt
Calculate the square root of 256 and get 16.
\sqrt{144}=fe^{2}dt
Add 128 and 16 to get 144.
12=fe^{2}dt
Calculate the square root of 144 and get 12.
fe^{2}dt=12
Swap sides so that all variable terms are on the left hand side.
e^{2}ftd=12
The equation is in standard form.
\frac{e^{2}ftd}{e^{2}ft}=\frac{12}{e^{2}ft}
Divide both sides by fe^{2}t.
d=\frac{12}{e^{2}ft}
Dividing by fe^{2}t undoes the multiplication by fe^{2}t.
\sqrt{128+\sqrt{260-\sqrt{16}}}=fe^{2}dt
Multiply e and e to get e^{2}.
\sqrt{128+\sqrt{260-4}}=fe^{2}dt
Calculate the square root of 16 and get 4.
\sqrt{128+\sqrt{256}}=fe^{2}dt
Subtract 4 from 260 to get 256.
\sqrt{128+16}=fe^{2}dt
Calculate the square root of 256 and get 16.
\sqrt{144}=fe^{2}dt
Add 128 and 16 to get 144.
12=fe^{2}dt
Calculate the square root of 144 and get 12.
fe^{2}dt=12
Swap sides so that all variable terms are on the left hand side.
e^{2}dtf=12
The equation is in standard form.
\frac{e^{2}dtf}{e^{2}dt}=\frac{12}{e^{2}dt}
Divide both sides by e^{2}dt.
f=\frac{12}{e^{2}dt}
Dividing by e^{2}dt undoes the multiplication by e^{2}dt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}