Evaluate
8\sqrt{3}\approx 13.856406461
Share
Copied to clipboard
2\sqrt{3}-6\sqrt{\frac{1}{3}}+2\sqrt{48}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}-6\times \frac{\sqrt{1}}{\sqrt{3}}+2\sqrt{48}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
2\sqrt{3}-6\times \frac{1}{\sqrt{3}}+2\sqrt{48}
Calculate the square root of 1 and get 1.
2\sqrt{3}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+2\sqrt{48}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{3}-6\times \frac{\sqrt{3}}{3}+2\sqrt{48}
The square of \sqrt{3} is 3.
2\sqrt{3}-2\sqrt{3}+2\sqrt{48}
Cancel out 3, the greatest common factor in 6 and 3.
2\sqrt{48}
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.
2\times 4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
8\sqrt{3}
Multiply 2 and 4 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}