Evaluate
0
Factor
0
Share
Copied to clipboard
2\sqrt{3}\left(3\sqrt{50}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}\left(3\times 5\sqrt{2}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
2\sqrt{3}\left(15\sqrt{2}-\sqrt{162}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Multiply 3 and 5 to get 15.
2\sqrt{3}\left(15\sqrt{2}-9\sqrt{2}\right)-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Factor 162=9^{2}\times 2. Rewrite the square root of the product \sqrt{9^{2}\times 2} as the product of square roots \sqrt{9^{2}}\sqrt{2}. Take the square root of 9^{2}.
2\sqrt{3}\times 6\sqrt{2}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Combine 15\sqrt{2} and -9\sqrt{2} to get 6\sqrt{2}.
12\sqrt{3}\sqrt{2}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
Multiply 2 and 6 to get 12.
12\sqrt{6}-\sqrt{18}\left(\sqrt{432}-\sqrt{192}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{6}-3\sqrt{2}\left(\sqrt{432}-\sqrt{192}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
12\sqrt{6}-3\sqrt{2}\left(12\sqrt{3}-\sqrt{192}\right)
Factor 432=12^{2}\times 3. Rewrite the square root of the product \sqrt{12^{2}\times 3} as the product of square roots \sqrt{12^{2}}\sqrt{3}. Take the square root of 12^{2}.
12\sqrt{6}-3\sqrt{2}\left(12\sqrt{3}-8\sqrt{3}\right)
Factor 192=8^{2}\times 3. Rewrite the square root of the product \sqrt{8^{2}\times 3} as the product of square roots \sqrt{8^{2}}\sqrt{3}. Take the square root of 8^{2}.
12\sqrt{6}-3\sqrt{2}\times 4\sqrt{3}
Combine 12\sqrt{3} and -8\sqrt{3} to get 4\sqrt{3}.
12\sqrt{6}-12\sqrt{2}\sqrt{3}
Multiply 3 and 4 to get 12.
12\sqrt{6}-12\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
0
Combine 12\sqrt{6} and -12\sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}