Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\sqrt{3}\sqrt{4}\times \frac{1}{4}\sqrt{3}}{\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Factor 12=3\times 4. Rewrite the square root of the product \sqrt{3\times 4} as the product of square roots \sqrt{3}\sqrt{4}.
\frac{3\times \frac{1}{4}\sqrt{4}}{\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\frac{3}{4}\sqrt{4}}{\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
\frac{\frac{3}{4}\times 2}{\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Calculate the square root of 4 and get 2.
\frac{\frac{3}{2}}{\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Multiply \frac{3}{4} and 2 to get \frac{3}{2}.
\frac{3}{2\sqrt{2}}+\left(1-\sqrt{2}\right)^{2}
Express \frac{\frac{3}{2}}{\sqrt{2}} as a single fraction.
\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\left(1-\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{2\times 2}+\left(1-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}}{4}+\left(1-\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{3\sqrt{2}}{4}+1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
\frac{3\sqrt{2}}{4}+1-2\sqrt{2}+2
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}}{4}+3-2\sqrt{2}
Add 1 and 2 to get 3.
-\frac{5}{4}\sqrt{2}+3
Combine \frac{3\sqrt{2}}{4} and -2\sqrt{2} to get -\frac{5}{4}\sqrt{2}.