Evaluate
3\sqrt{3}-2\sqrt{2}\approx 2.367725298
Share
Copied to clipboard
2\sqrt{3}+\frac{1}{\sqrt{3}-\sqrt{2}}-\sqrt{6}\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}+\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}-\sqrt{6}\sqrt{3}
Rationalize the denominator of \frac{1}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
2\sqrt{3}+\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\sqrt{6}\sqrt{3}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{3}+\frac{\sqrt{3}+\sqrt{2}}{3-2}-\sqrt{6}\sqrt{3}
Square \sqrt{3}. Square \sqrt{2}.
2\sqrt{3}+\frac{\sqrt{3}+\sqrt{2}}{1}-\sqrt{6}\sqrt{3}
Subtract 2 from 3 to get 1.
2\sqrt{3}+\sqrt{3}+\sqrt{2}-\sqrt{6}\sqrt{3}
Anything divided by one gives itself.
3\sqrt{3}+\sqrt{2}-\sqrt{6}\sqrt{3}
Combine 2\sqrt{3} and \sqrt{3} to get 3\sqrt{3}.
3\sqrt{3}+\sqrt{2}-\sqrt{3}\sqrt{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\sqrt{3}+\sqrt{2}-3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{3}-2\sqrt{2}
Combine \sqrt{2} and -3\sqrt{2} to get -2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}