Solve for x
x = \frac{11}{10} = 1\frac{1}{10} = 1.1
Graph
Share
Copied to clipboard
\left(\sqrt{11x-8}\right)^{2}=\left(\sqrt{x+3}\right)^{2}
Square both sides of the equation.
11x-8=\left(\sqrt{x+3}\right)^{2}
Calculate \sqrt{11x-8} to the power of 2 and get 11x-8.
11x-8=x+3
Calculate \sqrt{x+3} to the power of 2 and get x+3.
11x-8-x=3
Subtract x from both sides.
10x-8=3
Combine 11x and -x to get 10x.
10x=3+8
Add 8 to both sides.
10x=11
Add 3 and 8 to get 11.
x=\frac{11}{10}
Divide both sides by 10.
\sqrt{11\times \frac{11}{10}-8}=\sqrt{\frac{11}{10}+3}
Substitute \frac{11}{10} for x in the equation \sqrt{11x-8}=\sqrt{x+3}.
\frac{1}{10}\times 410^{\frac{1}{2}}=\frac{1}{10}\times 410^{\frac{1}{2}}
Simplify. The value x=\frac{11}{10} satisfies the equation.
x=\frac{11}{10}
Equation \sqrt{11x-8}=\sqrt{x+3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}