Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{10x+1}-\sqrt{2x}\right)^{2}=\left(\sqrt{3x+1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{10x+1}\right)^{2}-2\sqrt{10x+1}\sqrt{2x}+\left(\sqrt{2x}\right)^{2}=\left(\sqrt{3x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10x+1}-\sqrt{2x}\right)^{2}.
10x+1-2\sqrt{10x+1}\sqrt{2x}+\left(\sqrt{2x}\right)^{2}=\left(\sqrt{3x+1}\right)^{2}
Calculate \sqrt{10x+1} to the power of 2 and get 10x+1.
10x+1-2\sqrt{10x+1}\sqrt{2x}+2x=\left(\sqrt{3x+1}\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
12x+1-2\sqrt{10x+1}\sqrt{2x}=\left(\sqrt{3x+1}\right)^{2}
Combine 10x and 2x to get 12x.
12x+1-2\sqrt{10x+1}\sqrt{2x}=3x+1
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
-2\sqrt{10x+1}\sqrt{2x}=3x+1-\left(12x+1\right)
Subtract 12x+1 from both sides of the equation.
-2\sqrt{10x+1}\sqrt{2x}=3x+1-12x-1
To find the opposite of 12x+1, find the opposite of each term.
-2\sqrt{10x+1}\sqrt{2x}=-9x+1-1
Combine 3x and -12x to get -9x.
-2\sqrt{10x+1}\sqrt{2x}=-9x
Subtract 1 from 1 to get 0.
\left(-2\sqrt{10x+1}\sqrt{2x}\right)^{2}=\left(-9x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{10x+1}\right)^{2}\left(\sqrt{2x}\right)^{2}=\left(-9x\right)^{2}
Expand \left(-2\sqrt{10x+1}\sqrt{2x}\right)^{2}.
4\left(\sqrt{10x+1}\right)^{2}\left(\sqrt{2x}\right)^{2}=\left(-9x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(10x+1\right)\left(\sqrt{2x}\right)^{2}=\left(-9x\right)^{2}
Calculate \sqrt{10x+1} to the power of 2 and get 10x+1.
4\left(10x+1\right)\times 2x=\left(-9x\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
8\left(10x+1\right)x=\left(-9x\right)^{2}
Multiply 4 and 2 to get 8.
\left(80x+8\right)x=\left(-9x\right)^{2}
Use the distributive property to multiply 8 by 10x+1.
80x^{2}+8x=\left(-9x\right)^{2}
Use the distributive property to multiply 80x+8 by x.
80x^{2}+8x=\left(-9\right)^{2}x^{2}
Expand \left(-9x\right)^{2}.
80x^{2}+8x=81x^{2}
Calculate -9 to the power of 2 and get 81.
80x^{2}+8x-81x^{2}=0
Subtract 81x^{2} from both sides.
-x^{2}+8x=0
Combine 80x^{2} and -81x^{2} to get -x^{2}.
x\left(-x+8\right)=0
Factor out x.
x=0 x=8
To find equation solutions, solve x=0 and -x+8=0.
\sqrt{10\times 0+1}-\sqrt{2\times 0}=\sqrt{3\times 0+1}
Substitute 0 for x in the equation \sqrt{10x+1}-\sqrt{2x}=\sqrt{3x+1}.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{10\times 8+1}-\sqrt{2\times 8}=\sqrt{3\times 8+1}
Substitute 8 for x in the equation \sqrt{10x+1}-\sqrt{2x}=\sqrt{3x+1}.
5=5
Simplify. The value x=8 satisfies the equation.
x=0 x=8
List all solutions of \sqrt{10x+1}-\sqrt{2x}=\sqrt{3x+1}.