Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{10+2x}\right)^{2}=\left(x+1\right)^{2}
Square both sides of the equation.
10+2x=\left(x+1\right)^{2}
Calculate \sqrt{10+2x} to the power of 2 and get 10+2x.
10+2x=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
10+2x-x^{2}=2x+1
Subtract x^{2} from both sides.
10+2x-x^{2}-2x=1
Subtract 2x from both sides.
10-x^{2}=1
Combine 2x and -2x to get 0.
-x^{2}=1-10
Subtract 10 from both sides.
-x^{2}=-9
Subtract 10 from 1 to get -9.
x^{2}=\frac{-9}{-1}
Divide both sides by -1.
x^{2}=9
Fraction \frac{-9}{-1} can be simplified to 9 by removing the negative sign from both the numerator and the denominator.
x=3 x=-3
Take the square root of both sides of the equation.
\sqrt{10+2\times 3}=3+1
Substitute 3 for x in the equation \sqrt{10+2x}=x+1.
4=4
Simplify. The value x=3 satisfies the equation.
\sqrt{10+2\left(-3\right)}=-3+1
Substitute -3 for x in the equation \sqrt{10+2x}=x+1.
2=-2
Simplify. The value x=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=3
Equation \sqrt{2x+10}=x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}