Evaluate
\frac{\sqrt{133}}{14}\approx 0.823754471
Share
Copied to clipboard
\sqrt{1-\frac{\left(3\sqrt{7}\right)^{2}}{14^{2}}}
To raise \frac{3\sqrt{7}}{14} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{1-\frac{3^{2}\left(\sqrt{7}\right)^{2}}{14^{2}}}
Expand \left(3\sqrt{7}\right)^{2}.
\sqrt{1-\frac{9\left(\sqrt{7}\right)^{2}}{14^{2}}}
Calculate 3 to the power of 2 and get 9.
\sqrt{1-\frac{9\times 7}{14^{2}}}
The square of \sqrt{7} is 7.
\sqrt{1-\frac{63}{14^{2}}}
Multiply 9 and 7 to get 63.
\sqrt{1-\frac{63}{196}}
Calculate 14 to the power of 2 and get 196.
\sqrt{1-\frac{9}{28}}
Reduce the fraction \frac{63}{196} to lowest terms by extracting and canceling out 7.
\sqrt{\frac{19}{28}}
Subtract \frac{9}{28} from 1 to get \frac{19}{28}.
\frac{\sqrt{19}}{\sqrt{28}}
Rewrite the square root of the division \sqrt{\frac{19}{28}} as the division of square roots \frac{\sqrt{19}}{\sqrt{28}}.
\frac{\sqrt{19}}{2\sqrt{7}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{19}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{19}}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{19}\sqrt{7}}{2\times 7}
The square of \sqrt{7} is 7.
\frac{\sqrt{133}}{2\times 7}
To multiply \sqrt{19} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{133}}{14}
Multiply 2 and 7 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}