Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{1-\frac{x^{2}}{10}}\right)^{2}=\left(1-\frac{x}{3}\right)^{2}
Square both sides of the equation.
1-\frac{x^{2}}{10}=\left(1-\frac{x}{3}\right)^{2}
Calculate \sqrt{1-\frac{x^{2}}{10}} to the power of 2 and get 1-\frac{x^{2}}{10}.
1-\frac{x^{2}}{10}=1+2\left(-\frac{x}{3}\right)+\left(-\frac{x}{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1-\frac{x}{3}\right)^{2}.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\left(-\frac{x}{3}\right)^{2}
Express 2\left(-\frac{x}{3}\right) as a single fraction.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\left(\frac{x}{3}\right)^{2}
Calculate -\frac{x}{3} to the power of 2 and get \left(\frac{x}{3}\right)^{2}.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\frac{x^{2}}{3^{2}}
To raise \frac{x}{3} to a power, raise both numerator and denominator to the power and then divide.
1-\frac{x^{2}}{10}=\frac{3^{2}}{3^{2}}+\frac{-2x}{3}+\frac{x^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3^{2}}{3^{2}}.
1-\frac{x^{2}}{10}=\frac{3^{2}+x^{2}}{3^{2}}+\frac{-2x}{3}
Since \frac{3^{2}}{3^{2}} and \frac{x^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
1-\frac{x^{2}}{10}=\frac{9+x^{2}}{3^{2}}+\frac{-2x}{3}
Combine like terms in 3^{2}+x^{2}.
1-\frac{x^{2}}{10}=\frac{9+x^{2}}{9}+\frac{3\left(-2\right)x}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{-2x}{3} times \frac{3}{3}.
1-\frac{x^{2}}{10}=\frac{9+x^{2}+3\left(-2\right)x}{9}
Since \frac{9+x^{2}}{9} and \frac{3\left(-2\right)x}{9} have the same denominator, add them by adding their numerators.
1-\frac{x^{2}}{10}=\frac{9+x^{2}-6x}{9}
Do the multiplications in 9+x^{2}+3\left(-2\right)x.
1-\frac{x^{2}}{10}=1+\frac{1}{9}x^{2}-\frac{2}{3}x
Divide each term of 9+x^{2}-6x by 9 to get 1+\frac{1}{9}x^{2}-\frac{2}{3}x.
90-9x^{2}=90+10x^{2}-60x
Multiply both sides of the equation by 90, the least common multiple of 10,9,3.
90-9x^{2}-90=10x^{2}-60x
Subtract 90 from both sides.
-9x^{2}=10x^{2}-60x
Subtract 90 from 90 to get 0.
-9x^{2}-10x^{2}=-60x
Subtract 10x^{2} from both sides.
-19x^{2}=-60x
Combine -9x^{2} and -10x^{2} to get -19x^{2}.
-19x^{2}+60x=0
Add 60x to both sides.
x\left(-19x+60\right)=0
Factor out x.
x=0 x=\frac{60}{19}
To find equation solutions, solve x=0 and -19x+60=0.
\sqrt{1-\frac{0^{2}}{10}}=1-\frac{0}{3}
Substitute 0 for x in the equation \sqrt{1-\frac{x^{2}}{10}}=1-\frac{x}{3}.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{1-\frac{\left(\frac{60}{19}\right)^{2}}{10}}=1-\frac{\frac{60}{19}}{3}
Substitute \frac{60}{19} for x in the equation \sqrt{1-\frac{x^{2}}{10}}=1-\frac{x}{3}.
\frac{1}{19}=-\frac{1}{19}
Simplify. The value x=\frac{60}{19} does not satisfy the equation because the left and the right hand side have opposite signs.
x=0
Equation \sqrt{-\frac{x^{2}}{10}+1}=-\frac{x}{3}+1 has a unique solution.