Solve for x
x=\frac{2\left(\sqrt{10}-8\right)}{3}\approx -3.225148227
Graph
Share
Copied to clipboard
\left(\sqrt{1-\frac{2x}{3}}\right)^{2}=\left(x+5\right)^{2}
Square both sides of the equation.
1-\frac{2x}{3}=\left(x+5\right)^{2}
Calculate \sqrt{1-\frac{2x}{3}} to the power of 2 and get 1-\frac{2x}{3}.
1-\frac{2x}{3}=x^{2}+10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
3-2x=3x^{2}+30x+75
Multiply both sides of the equation by 3.
3-2x-3x^{2}=30x+75
Subtract 3x^{2} from both sides.
3-2x-3x^{2}-30x=75
Subtract 30x from both sides.
3-32x-3x^{2}=75
Combine -2x and -30x to get -32x.
3-32x-3x^{2}-75=0
Subtract 75 from both sides.
-72-32x-3x^{2}=0
Subtract 75 from 3 to get -72.
-3x^{2}-32x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -32 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024+12\left(-72\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-32\right)±\sqrt{1024-864}}{2\left(-3\right)}
Multiply 12 times -72.
x=\frac{-\left(-32\right)±\sqrt{160}}{2\left(-3\right)}
Add 1024 to -864.
x=\frac{-\left(-32\right)±4\sqrt{10}}{2\left(-3\right)}
Take the square root of 160.
x=\frac{32±4\sqrt{10}}{2\left(-3\right)}
The opposite of -32 is 32.
x=\frac{32±4\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{10}+32}{-6}
Now solve the equation x=\frac{32±4\sqrt{10}}{-6} when ± is plus. Add 32 to 4\sqrt{10}.
x=\frac{-2\sqrt{10}-16}{3}
Divide 32+4\sqrt{10} by -6.
x=\frac{32-4\sqrt{10}}{-6}
Now solve the equation x=\frac{32±4\sqrt{10}}{-6} when ± is minus. Subtract 4\sqrt{10} from 32.
x=\frac{2\sqrt{10}-16}{3}
Divide 32-4\sqrt{10} by -6.
x=\frac{-2\sqrt{10}-16}{3} x=\frac{2\sqrt{10}-16}{3}
The equation is now solved.
\sqrt{1-\frac{2\times \frac{-2\sqrt{10}-16}{3}}{3}}=\frac{-2\sqrt{10}-16}{3}+5
Substitute \frac{-2\sqrt{10}-16}{3} for x in the equation \sqrt{1-\frac{2x}{3}}=x+5.
\frac{2}{3}\times 10^{\frac{1}{2}}+\frac{1}{3}=-\frac{2}{3}\times 10^{\frac{1}{2}}-\frac{1}{3}
Simplify. The value x=\frac{-2\sqrt{10}-16}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{1-\frac{2\times \frac{2\sqrt{10}-16}{3}}{3}}=\frac{2\sqrt{10}-16}{3}+5
Substitute \frac{2\sqrt{10}-16}{3} for x in the equation \sqrt{1-\frac{2x}{3}}=x+5.
\frac{2}{3}\times 10^{\frac{1}{2}}-\frac{1}{3}=\frac{2}{3}\times 10^{\frac{1}{2}}-\frac{1}{3}
Simplify. The value x=\frac{2\sqrt{10}-16}{3} satisfies the equation.
x=\frac{2\sqrt{10}-16}{3}
Equation \sqrt{-\frac{2x}{3}+1}=x+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}