Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{3+2}{3}}-2\sqrt{45}+2\sqrt{20}
Multiply 1 and 3 to get 3.
\sqrt{\frac{5}{3}}-2\sqrt{45}+2\sqrt{20}
Add 3 and 2 to get 5.
\frac{\sqrt{5}}{\sqrt{3}}-2\sqrt{45}+2\sqrt{20}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-2\sqrt{45}+2\sqrt{20}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}-2\sqrt{45}+2\sqrt{20}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}-2\sqrt{45}+2\sqrt{20}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}-2\times 3\sqrt{5}+2\sqrt{20}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\sqrt{15}}{3}-6\sqrt{5}+2\sqrt{20}
Multiply -2 and 3 to get -6.
\frac{\sqrt{15}}{3}-6\sqrt{5}+2\times 2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{15}}{3}-6\sqrt{5}+4\sqrt{5}
Multiply 2 and 2 to get 4.
\frac{\sqrt{15}}{3}-2\sqrt{5}
Combine -6\sqrt{5} and 4\sqrt{5} to get -2\sqrt{5}.
\frac{\sqrt{15}}{3}+\frac{3\left(-2\right)\sqrt{5}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{5} times \frac{3}{3}.
\frac{\sqrt{15}+3\left(-2\right)\sqrt{5}}{3}
Since \frac{\sqrt{15}}{3} and \frac{3\left(-2\right)\sqrt{5}}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{15}-6\sqrt{5}}{3}
Do the multiplications in \sqrt{15}+3\left(-2\right)\sqrt{5}.