Evaluate
\frac{\sqrt{15}}{3}-\frac{\sqrt{10}}{4}\approx 0.500425034
Share
Copied to clipboard
\sqrt{\frac{3+2}{3}}-\sqrt{\frac{5}{8}}
Multiply 1 and 3 to get 3.
\sqrt{\frac{5}{3}}-\sqrt{\frac{5}{8}}
Add 3 and 2 to get 5.
\frac{\sqrt{5}}{\sqrt{3}}-\sqrt{\frac{5}{8}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{5}{8}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}-\sqrt{\frac{5}{8}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}-\sqrt{\frac{5}{8}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}-\frac{\sqrt{5}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{5}{8}} as the division of square roots \frac{\sqrt{5}}{\sqrt{8}}.
\frac{\sqrt{15}}{3}-\frac{\sqrt{5}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{15}}{3}-\frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{15}}{3}-\frac{\sqrt{5}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{15}}{3}-\frac{\sqrt{10}}{2\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}-\frac{\sqrt{10}}{4}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{15}}{12}-\frac{3\sqrt{10}}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{\sqrt{15}}{3} times \frac{4}{4}. Multiply \frac{\sqrt{10}}{4} times \frac{3}{3}.
\frac{4\sqrt{15}-3\sqrt{10}}{12}
Since \frac{4\sqrt{15}}{12} and \frac{3\sqrt{10}}{12} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}