Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Quiz
Arithmetic
5 problems similar to:
\sqrt { 1 \frac { 2 } { 3 } } \times \sqrt { \frac { 15 } { 4 } }
Share
Copied to clipboard
\sqrt{\frac{3+2}{3}}\sqrt{\frac{15}{4}}
Multiply 1 and 3 to get 3.
\sqrt{\frac{5}{3}}\sqrt{\frac{15}{4}}
Add 3 and 2 to get 5.
\frac{\sqrt{5}}{\sqrt{3}}\sqrt{\frac{15}{4}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{\frac{15}{4}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}\sqrt{\frac{15}{4}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}\sqrt{\frac{15}{4}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}\times \frac{\sqrt{15}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{15}{4}} as the division of square roots \frac{\sqrt{15}}{\sqrt{4}}.
\frac{\sqrt{15}}{3}\times \frac{\sqrt{15}}{2}
Calculate the square root of 4 and get 2.
\frac{\sqrt{15}\sqrt{15}}{3\times 2}
Multiply \frac{\sqrt{15}}{3} times \frac{\sqrt{15}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{3\times 2}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{15}{6}
Multiply 3 and 2 to get 6.
\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}