Evaluate
\frac{8\sqrt{154}}{77}\approx 1.289316742
Share
Copied to clipboard
\frac{\sqrt{\frac{3+1}{3}}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Multiply 1 and 3 to get 3.
\frac{\sqrt{\frac{4}{3}}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Add 3 and 1 to get 4.
\frac{\frac{\sqrt{4}}{\sqrt{3}}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{\frac{2}{\sqrt{3}}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Calculate the square root of 4 and get 2.
\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}\sqrt{\frac{1\times 5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}\sqrt{\frac{5+1}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Multiply 1 and 5 to get 5.
\frac{\frac{2\sqrt{3}}{3}\sqrt{\frac{6}{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Add 5 and 1 to get 6.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{6}}{\sqrt{5}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rewrite the square root of the division \sqrt{\frac{6}{5}} as the division of square roots \frac{\sqrt{6}}{\sqrt{5}}.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{6}\sqrt{5}}{5}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
The square of \sqrt{5} is 5.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\sqrt{\frac{1\times 7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\sqrt{\frac{7+1}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Multiply 1 and 7 to get 7.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\sqrt{\frac{8}{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Add 7 and 1 to get 8.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\times \frac{\sqrt{8}}{\sqrt{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rewrite the square root of the division \sqrt{\frac{8}{7}} as the division of square roots \frac{\sqrt{8}}{\sqrt{7}}.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\times \frac{2\sqrt{2}}{\sqrt{7}}}{\sqrt{\frac{1\times 10+1}{10}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\times \frac{2\sqrt{2}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}}{\sqrt{\frac{1\times 10+1}{10}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\times \frac{2\sqrt{2}\sqrt{7}}{7}}{\sqrt{\frac{1\times 10+1}{10}}}
The square of \sqrt{7} is 7.
\frac{\frac{2\sqrt{3}}{3}\times \frac{\sqrt{30}}{5}\times \frac{2\sqrt{14}}{7}}{\sqrt{\frac{1\times 10+1}{10}}}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{\frac{2\sqrt{3}\sqrt{30}}{3\times 5}\times \frac{2\sqrt{14}}{7}}{\sqrt{\frac{1\times 10+1}{10}}}
Multiply \frac{2\sqrt{3}}{3} times \frac{\sqrt{30}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\sqrt{\frac{1\times 10+1}{10}}}
Multiply \frac{2\sqrt{3}\sqrt{30}}{3\times 5} times \frac{2\sqrt{14}}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\sqrt{\frac{10+1}{10}}}
Multiply 1 and 10 to get 10.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\sqrt{\frac{11}{10}}}
Add 10 and 1 to get 11.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\frac{\sqrt{11}}{\sqrt{10}}}
Rewrite the square root of the division \sqrt{\frac{11}{10}} as the division of square roots \frac{\sqrt{11}}{\sqrt{10}}.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\frac{\sqrt{11}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\frac{\sqrt{11}\sqrt{10}}{10}}
The square of \sqrt{10} is 10.
\frac{\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7}}{\frac{\sqrt{110}}{10}}
To multiply \sqrt{11} and \sqrt{10}, multiply the numbers under the square root.
\frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}\times 10}{3\times 5\times 7\sqrt{110}}
Divide \frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7} by \frac{\sqrt{110}}{10} by multiplying \frac{2\sqrt{3}\sqrt{30}\times 2\sqrt{14}}{3\times 5\times 7} by the reciprocal of \frac{\sqrt{110}}{10}.
\frac{2\times 2\times 2\sqrt{3}\sqrt{14}\sqrt{30}}{3\times 7\sqrt{110}}
Cancel out 5 in both numerator and denominator.
\frac{2\times 2\times 2\sqrt{3}\sqrt{14}\sqrt{30}\sqrt{110}}{3\times 7\left(\sqrt{110}\right)^{2}}
Rationalize the denominator of \frac{2\times 2\times 2\sqrt{3}\sqrt{14}\sqrt{30}}{3\times 7\sqrt{110}} by multiplying numerator and denominator by \sqrt{110}.
\frac{2\times 2\times 2\sqrt{3}\sqrt{14}\sqrt{30}\sqrt{110}}{3\times 7\times 110}
The square of \sqrt{110} is 110.
\frac{2\times 2\times 2\sqrt{3}\sqrt{14}\sqrt{3}\sqrt{10}\sqrt{110}}{3\times 7\times 110}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{2\times 2\times 2\times 3\sqrt{14}\sqrt{10}\sqrt{110}}{3\times 7\times 110}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4\times 2\times 3\sqrt{14}\sqrt{10}\sqrt{110}}{3\times 7\times 110}
Multiply 2 and 2 to get 4.
\frac{8\times 3\sqrt{14}\sqrt{10}\sqrt{110}}{3\times 7\times 110}
Multiply 4 and 2 to get 8.
\frac{24\sqrt{14}\sqrt{10}\sqrt{110}}{3\times 7\times 110}
Multiply 8 and 3 to get 24.
\frac{24\sqrt{140}\sqrt{110}}{3\times 7\times 110}
To multiply \sqrt{14} and \sqrt{10}, multiply the numbers under the square root.
\frac{24\times 2\sqrt{35}\sqrt{110}}{3\times 7\times 110}
Factor 140=2^{2}\times 35. Rewrite the square root of the product \sqrt{2^{2}\times 35} as the product of square roots \sqrt{2^{2}}\sqrt{35}. Take the square root of 2^{2}.
\frac{48\sqrt{35}\sqrt{110}}{3\times 7\times 110}
Multiply 24 and 2 to get 48.
\frac{48\sqrt{3850}}{3\times 7\times 110}
To multiply \sqrt{35} and \sqrt{110}, multiply the numbers under the square root.
\frac{48\sqrt{3850}}{21\times 110}
Multiply 3 and 7 to get 21.
\frac{48\sqrt{3850}}{2310}
Multiply 21 and 110 to get 2310.
\frac{48\times 5\sqrt{154}}{2310}
Factor 3850=5^{2}\times 154. Rewrite the square root of the product \sqrt{5^{2}\times 154} as the product of square roots \sqrt{5^{2}}\sqrt{154}. Take the square root of 5^{2}.
\frac{240\sqrt{154}}{2310}
Multiply 48 and 5 to get 240.
\frac{8}{77}\sqrt{154}
Divide 240\sqrt{154} by 2310 to get \frac{8}{77}\sqrt{154}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}