Evaluate
\frac{\sqrt{210}}{21}\approx 0.690065559
Share
Copied to clipboard
\frac{\frac{\sqrt{\frac{3+1}{3}}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Multiply 1 and 3 to get 3.
\frac{\frac{\sqrt{\frac{4}{3}}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Add 3 and 1 to get 4.
\frac{\frac{\frac{\sqrt{4}}{\sqrt{3}}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{\frac{\frac{2}{\sqrt{3}}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Calculate the square root of 4 and get 2.
\frac{\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{2\times 3+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
The square of \sqrt{3} is 3.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{6+1}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Multiply 2 and 3 to get 6.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{7}{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Add 6 and 1 to get 7.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{7}}{\sqrt{3}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}}{\sqrt{\frac{1\times 5+1}{5}}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}}{\sqrt{\frac{1\times 5+1}{5}}}
The square of \sqrt{3} is 3.
\frac{\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{21}}{3}}}{\sqrt{\frac{1\times 5+1}{5}}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{2\sqrt{3}\times 3}{3\sqrt{21}}}{\sqrt{\frac{1\times 5+1}{5}}}
Divide \frac{2\sqrt{3}}{3} by \frac{\sqrt{21}}{3} by multiplying \frac{2\sqrt{3}}{3} by the reciprocal of \frac{\sqrt{21}}{3}.
\frac{\frac{2\sqrt{3}}{\sqrt{21}}}{\sqrt{\frac{1\times 5+1}{5}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{2\sqrt{3}\sqrt{21}}{\left(\sqrt{21}\right)^{2}}}{\sqrt{\frac{1\times 5+1}{5}}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{\frac{2\sqrt{3}\sqrt{21}}{21}}{\sqrt{\frac{1\times 5+1}{5}}}
The square of \sqrt{21} is 21.
\frac{\frac{2\sqrt{3}\sqrt{3}\sqrt{7}}{21}}{\sqrt{\frac{1\times 5+1}{5}}}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
\frac{\frac{2\times 3\sqrt{7}}{21}}{\sqrt{\frac{1\times 5+1}{5}}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\frac{6\sqrt{7}}{21}}{\sqrt{\frac{1\times 5+1}{5}}}
Multiply 2 and 3 to get 6.
\frac{\frac{2}{7}\sqrt{7}}{\sqrt{\frac{1\times 5+1}{5}}}
Divide 6\sqrt{7} by 21 to get \frac{2}{7}\sqrt{7}.
\frac{\frac{2}{7}\sqrt{7}}{\sqrt{\frac{5+1}{5}}}
Multiply 1 and 5 to get 5.
\frac{\frac{2}{7}\sqrt{7}}{\sqrt{\frac{6}{5}}}
Add 5 and 1 to get 6.
\frac{\frac{2}{7}\sqrt{7}}{\frac{\sqrt{6}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{6}{5}} as the division of square roots \frac{\sqrt{6}}{\sqrt{5}}.
\frac{\frac{2}{7}\sqrt{7}}{\frac{\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2}{7}\sqrt{7}}{\frac{\sqrt{6}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\frac{2}{7}\sqrt{7}}{\frac{\sqrt{30}}{5}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{2}{7}\sqrt{7}\times 5}{\sqrt{30}}
Divide \frac{2}{7}\sqrt{7} by \frac{\sqrt{30}}{5} by multiplying \frac{2}{7}\sqrt{7} by the reciprocal of \frac{\sqrt{30}}{5}.
\frac{\frac{2}{7}\sqrt{7}\times 5\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
Rationalize the denominator of \frac{\frac{2}{7}\sqrt{7}\times 5}{\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
\frac{\frac{2}{7}\sqrt{7}\times 5\sqrt{30}}{30}
The square of \sqrt{30} is 30.
\frac{\frac{2\times 5}{7}\sqrt{7}\sqrt{30}}{30}
Express \frac{2}{7}\times 5 as a single fraction.
\frac{\frac{10}{7}\sqrt{7}\sqrt{30}}{30}
Multiply 2 and 5 to get 10.
\frac{\frac{10}{7}\sqrt{210}}{30}
To multiply \sqrt{7} and \sqrt{30}, multiply the numbers under the square root.
\frac{1}{21}\sqrt{210}
Divide \frac{10}{7}\sqrt{210} by 30 to get \frac{1}{21}\sqrt{210}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}