Evaluate
-6
Factor
-6
Share
Copied to clipboard
\frac{\sqrt{\frac{2+1}{2}}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
Multiply 1 and 2 to get 2.
\frac{\sqrt{\frac{3}{2}}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
Add 2 and 1 to get 3.
\frac{\frac{\sqrt{3}}{\sqrt{2}}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{3}\sqrt{2}}{2}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{6}}{2}}{-\frac{1}{2}\sqrt{\frac{1}{6}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{\sqrt{6}}{2}}{-\frac{1}{2}\times \frac{\sqrt{1}}{\sqrt{6}}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
\frac{\frac{\sqrt{6}}{2}}{-\frac{1}{2}\times \frac{1}{\sqrt{6}}}
Calculate the square root of 1 and get 1.
\frac{\frac{\sqrt{6}}{2}}{-\frac{1}{2}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\frac{\sqrt{6}}{2}}{-\frac{1}{2}\times \frac{\sqrt{6}}{6}}
The square of \sqrt{6} is 6.
\frac{\frac{\sqrt{6}}{2}}{\frac{-\sqrt{6}}{2\times 6}}
Multiply -\frac{1}{2} times \frac{\sqrt{6}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}\times 2\times 6}{2\left(-1\right)\sqrt{6}}
Divide \frac{\sqrt{6}}{2} by \frac{-\sqrt{6}}{2\times 6} by multiplying \frac{\sqrt{6}}{2} by the reciprocal of \frac{-\sqrt{6}}{2\times 6}.
\frac{6}{-1}
Cancel out 2\sqrt{6} in both numerator and denominator.
-6
Fraction \frac{6}{-1} can be rewritten as -6 by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}