Solve for x
x=\frac{2\sqrt{5}}{5}\approx 0.894427191
Graph
Share
Copied to clipboard
\left(\sqrt{1+x}+\sqrt{1-x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Square both sides of the equation.
\left(\sqrt{1+x}\right)^{2}+2\sqrt{1+x}\sqrt{1-x}+\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{1+x}+\sqrt{1-x}\right)^{2}.
1+x+2\sqrt{1+x}\sqrt{1-x}+\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
1+x+2\sqrt{1+x}\sqrt{1-x}+1-x=\left(\sqrt{x+2}\right)^{2}
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
2+x+2\sqrt{1+x}\sqrt{1-x}-x=\left(\sqrt{x+2}\right)^{2}
Add 1 and 1 to get 2.
2+2\sqrt{1+x}\sqrt{1-x}=\left(\sqrt{x+2}\right)^{2}
Combine x and -x to get 0.
2+2\sqrt{1+x}\sqrt{1-x}=x+2
Calculate \sqrt{x+2} to the power of 2 and get x+2.
2\sqrt{1+x}\sqrt{1-x}=x+2-2
Subtract 2 from both sides of the equation.
2\sqrt{1+x}\sqrt{1-x}=x
Subtract 2 from 2 to get 0.
\left(2\sqrt{1+x}\sqrt{1-x}\right)^{2}=x^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{1+x}\right)^{2}\left(\sqrt{1-x}\right)^{2}=x^{2}
Expand \left(2\sqrt{1+x}\sqrt{1-x}\right)^{2}.
4\left(\sqrt{1+x}\right)^{2}\left(\sqrt{1-x}\right)^{2}=x^{2}
Calculate 2 to the power of 2 and get 4.
4\left(1+x\right)\left(\sqrt{1-x}\right)^{2}=x^{2}
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
4\left(1+x\right)\left(1-x\right)=x^{2}
Calculate \sqrt{1-x} to the power of 2 and get 1-x.
\left(4+4x\right)\left(1-x\right)=x^{2}
Use the distributive property to multiply 4 by 1+x.
4-4x+4x-4x^{2}=x^{2}
Apply the distributive property by multiplying each term of 4+4x by each term of 1-x.
4-4x^{2}=x^{2}
Combine -4x and 4x to get 0.
4-4x^{2}-x^{2}=0
Subtract x^{2} from both sides.
4-5x^{2}=0
Combine -4x^{2} and -x^{2} to get -5x^{2}.
-5x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-4}{-5}
Divide both sides by -5.
x^{2}=\frac{4}{5}
Fraction \frac{-4}{-5} can be simplified to \frac{4}{5} by removing the negative sign from both the numerator and the denominator.
x=\frac{2\sqrt{5}}{5} x=-\frac{2\sqrt{5}}{5}
Take the square root of both sides of the equation.
\sqrt{1+\frac{2\sqrt{5}}{5}}+\sqrt{1-\frac{2\sqrt{5}}{5}}=\sqrt{\frac{2\sqrt{5}}{5}+2}
Substitute \frac{2\sqrt{5}}{5} for x in the equation \sqrt{1+x}+\sqrt{1-x}=\sqrt{x+2}.
\left(1+\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}+\left(1-\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{2}{5}\times 5^{\frac{1}{2}}+2\right)^{\frac{1}{2}}
Simplify. The value x=\frac{2\sqrt{5}}{5} satisfies the equation.
\sqrt{1-\frac{2\sqrt{5}}{5}}+\sqrt{1-\left(-\frac{2\sqrt{5}}{5}\right)}=\sqrt{-\frac{2\sqrt{5}}{5}+2}
Substitute -\frac{2\sqrt{5}}{5} for x in the equation \sqrt{1+x}+\sqrt{1-x}=\sqrt{x+2}.
\left(1-\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}+\left(1+\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(-\frac{2}{5}\times 5^{\frac{1}{2}}+2\right)^{\frac{1}{2}}
Simplify. The value x=-\frac{2\sqrt{5}}{5} does not satisfy the equation.
\sqrt{1+\frac{2\sqrt{5}}{5}}+\sqrt{1-\frac{2\sqrt{5}}{5}}=\sqrt{\frac{2\sqrt{5}}{5}+2}
Substitute \frac{2\sqrt{5}}{5} for x in the equation \sqrt{1+x}+\sqrt{1-x}=\sqrt{x+2}.
\left(1+\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}+\left(1-\frac{2}{5}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{2}{5}\times 5^{\frac{1}{2}}+2\right)^{\frac{1}{2}}
Simplify. The value x=\frac{2\sqrt{5}}{5} satisfies the equation.
x=\frac{2\sqrt{5}}{5}
Equation \sqrt{x+1}+\sqrt{1-x}=\sqrt{x+2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}