Solve for k (complex solution)
k=-\frac{i\left(1-m^{2}\right)^{-\frac{1}{2}}\sqrt{2-4m^{2}}}{2}
k=\frac{i\left(1-m^{2}\right)^{-\frac{1}{2}}\sqrt{2-4m^{2}}}{2}\text{, }m\neq 1\text{ and }m\neq -1\text{ and }m\neq 0
Solve for m (complex solution)
m=-\frac{i\left(k^{2}+1\right)^{-\frac{1}{2}}\sqrt{-4k^{2}-2}}{2}
m=\frac{i\left(k^{2}+1\right)^{-\frac{1}{2}}\sqrt{-4k^{2}-2}}{2}\text{, }k\neq -\frac{\sqrt{2}i}{2}\text{ and }k\neq \frac{\sqrt{2}i}{2}\text{ and }k\neq -i\text{ and }k\neq i
Solve for k
k=\frac{\sqrt{\frac{2\left(2m^{2}-1\right)}{1-m^{2}}}}{2}
k=-\frac{\sqrt{\frac{2\left(2m^{2}-1\right)}{1-m^{2}}}}{2}\text{, }\left(m\geq \frac{\sqrt{2}}{2}\text{ and }m<1\right)\text{ or }\left(m>-1\text{ and }m\leq -\frac{\sqrt{2}}{2}\right)
Solve for m
m=\frac{\sqrt{\frac{2\left(2k^{2}+1\right)}{k^{2}+1}}}{2}
m=-\frac{\sqrt{\frac{2\left(2k^{2}+1\right)}{k^{2}+1}}}{2}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}