Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{1+\left(y+3\right)^{2}+\left(y-1\right)^{2}}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{1+y^{2}+6y+9+\left(y-1\right)^{2}}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
\left(\sqrt{10+y^{2}+6y+\left(y-1\right)^{2}}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Add 1 and 9 to get 10.
\left(\sqrt{10+y^{2}+6y+y^{2}-2y+1}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
\left(\sqrt{10+2y^{2}+6y-2y+1}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Combine y^{2} and y^{2} to get 2y^{2}.
\left(\sqrt{10+2y^{2}+4y+1}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Combine 6y and -2y to get 4y.
\left(\sqrt{11+2y^{2}+4y}\right)^{2}=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Add 10 and 1 to get 11.
11+2y^{2}+4y=\left(\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}\right)^{2}
Calculate \sqrt{11+2y^{2}+4y} to the power of 2 and get 11+2y^{2}+4y.
11+2y^{2}+4y=\left(\sqrt{25+y^{2}-14y+49+\left(y+5\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-7\right)^{2}.
11+2y^{2}+4y=\left(\sqrt{74+y^{2}-14y+\left(y+5\right)^{2}}\right)^{2}
Add 25 and 49 to get 74.
11+2y^{2}+4y=\left(\sqrt{74+y^{2}-14y+y^{2}+10y+25}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+5\right)^{2}.
11+2y^{2}+4y=\left(\sqrt{74+2y^{2}-14y+10y+25}\right)^{2}
Combine y^{2} and y^{2} to get 2y^{2}.
11+2y^{2}+4y=\left(\sqrt{74+2y^{2}-4y+25}\right)^{2}
Combine -14y and 10y to get -4y.
11+2y^{2}+4y=\left(\sqrt{99+2y^{2}-4y}\right)^{2}
Add 74 and 25 to get 99.
11+2y^{2}+4y=99+2y^{2}-4y
Calculate \sqrt{99+2y^{2}-4y} to the power of 2 and get 99+2y^{2}-4y.
11+2y^{2}+4y-2y^{2}=99-4y
Subtract 2y^{2} from both sides.
11+4y=99-4y
Combine 2y^{2} and -2y^{2} to get 0.
11+4y+4y=99
Add 4y to both sides.
11+8y=99
Combine 4y and 4y to get 8y.
8y=99-11
Subtract 11 from both sides.
8y=88
Subtract 11 from 99 to get 88.
y=\frac{88}{8}
Divide both sides by 8.
y=11
Divide 88 by 8 to get 11.
\sqrt{1+\left(11+3\right)^{2}+\left(11-1\right)^{2}}=\sqrt{25+\left(11-7\right)^{2}+\left(11+5\right)^{2}}
Substitute 11 for y in the equation \sqrt{1+\left(y+3\right)^{2}+\left(y-1\right)^{2}}=\sqrt{25+\left(y-7\right)^{2}+\left(y+5\right)^{2}}.
3\times 33^{\frac{1}{2}}=3\times 33^{\frac{1}{2}}
Simplify. The value y=11 satisfies the equation.
y=11
Equation \sqrt{\left(y+3\right)^{2}+\left(y-1\right)^{2}+1}=\sqrt{\left(y+5\right)^{2}+\left(y-7\right)^{2}+25} has a unique solution.