Evaluate
\frac{3\sqrt{226}}{7}\approx 6.442841305
Share
Copied to clipboard
\sqrt{1+\frac{961}{49}+\left(\frac{32}{7}\right)^{2}}
Calculate \frac{31}{7} to the power of 2 and get \frac{961}{49}.
\sqrt{\frac{49}{49}+\frac{961}{49}+\left(\frac{32}{7}\right)^{2}}
Convert 1 to fraction \frac{49}{49}.
\sqrt{\frac{49+961}{49}+\left(\frac{32}{7}\right)^{2}}
Since \frac{49}{49} and \frac{961}{49} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1010}{49}+\left(\frac{32}{7}\right)^{2}}
Add 49 and 961 to get 1010.
\sqrt{\frac{1010}{49}+\frac{1024}{49}}
Calculate \frac{32}{7} to the power of 2 and get \frac{1024}{49}.
\sqrt{\frac{1010+1024}{49}}
Since \frac{1010}{49} and \frac{1024}{49} have the same denominator, add them by adding their numerators.
\sqrt{\frac{2034}{49}}
Add 1010 and 1024 to get 2034.
\frac{\sqrt{2034}}{\sqrt{49}}
Rewrite the square root of the division \sqrt{\frac{2034}{49}} as the division of square roots \frac{\sqrt{2034}}{\sqrt{49}}.
\frac{3\sqrt{226}}{\sqrt{49}}
Factor 2034=3^{2}\times 226. Rewrite the square root of the product \sqrt{3^{2}\times 226} as the product of square roots \sqrt{3^{2}}\sqrt{226}. Take the square root of 3^{2}.
\frac{3\sqrt{226}}{7}
Calculate the square root of 49 and get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}