Evaluate
\frac{7}{4}=1.75
Factor
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
Quiz
Arithmetic
5 problems similar to:
\sqrt { 1 + \frac { 9 } { 16 } } + \sqrt { 1 - \frac { 3 } { 4 } }
Share
Copied to clipboard
\sqrt{\frac{16}{16}+\frac{9}{16}}+\sqrt{1-\frac{3}{4}}
Convert 1 to fraction \frac{16}{16}.
\sqrt{\frac{16+9}{16}}+\sqrt{1-\frac{3}{4}}
Since \frac{16}{16} and \frac{9}{16} have the same denominator, add them by adding their numerators.
\sqrt{\frac{25}{16}}+\sqrt{1-\frac{3}{4}}
Add 16 and 9 to get 25.
\frac{5}{4}+\sqrt{1-\frac{3}{4}}
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{5}{4}+\sqrt{\frac{4}{4}-\frac{3}{4}}
Convert 1 to fraction \frac{4}{4}.
\frac{5}{4}+\sqrt{\frac{4-3}{4}}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}+\sqrt{\frac{1}{4}}
Subtract 3 from 4 to get 1.
\frac{5}{4}+\frac{1}{2}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{5}{4}+\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{5}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{5+2}{4}
Since \frac{5}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}
Add 5 and 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}