Evaluate
\frac{455\sqrt{6}}{64}+\frac{31}{12}\approx 19.997674473
Factor
\frac{1365 \sqrt{6} + 496}{192} = 19.99767447343249
Share
Copied to clipboard
\sqrt{\frac{2}{2}+\frac{1}{2}}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Convert 1 to fraction \frac{2}{2}.
\sqrt{\frac{2+1}{2}}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\sqrt{\frac{3}{2}}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Add 2 and 1 to get 3.
\frac{\sqrt{3}}{\sqrt{2}}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}\sqrt{2}}{2}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-1+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\left(\frac{9}{2}-\frac{2}{2}+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Convert 1 to fraction \frac{2}{2}.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\left(\frac{9-2}{2}+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{9}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\left(\frac{7}{2}+\frac{3}{2}\right)\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Subtract 2 from 9 to get 7.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\frac{7+3}{2}\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{7}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\frac{10}{2}\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Add 7 and 3 to get 10.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\left(1+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Divide 10 by 2 to get 5.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\left(\frac{5}{5}+\frac{7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Convert 1 to fraction \frac{5}{5}.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\left(\frac{5+7}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{5}{5} and \frac{7}{5} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\left(\frac{12}{5}-\frac{6}{5}\right)+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Add 5 and 7 to get 12.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\times \frac{12-6}{5}+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{12}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(5\times \frac{6}{5}+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Subtract 6 from 12 to get 6.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(6+\frac{3}{2}\times \frac{9}{4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Cancel out 5 and 5.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(6+\frac{3\times 9}{2\times 4}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Multiply \frac{3}{2} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(6+\frac{27}{8}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Do the multiplications in the fraction \frac{3\times 9}{2\times 4}.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\left(\frac{48}{8}+\frac{27}{8}\right)\right)\times \frac{5}{2}+\frac{31}{12}
Convert 6 to fraction \frac{48}{8}.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\times \frac{48+27}{8}\right)\times \frac{5}{2}+\frac{31}{12}
Since \frac{48}{8} and \frac{27}{8} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}}{2}\left(1+\frac{1}{2}\times \frac{75}{8}\right)\times \frac{5}{2}+\frac{31}{12}
Add 48 and 27 to get 75.
\frac{\sqrt{6}}{2}\left(1+\frac{1\times 75}{2\times 8}\right)\times \frac{5}{2}+\frac{31}{12}
Multiply \frac{1}{2} times \frac{75}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}}{2}\left(1+\frac{75}{16}\right)\times \frac{5}{2}+\frac{31}{12}
Do the multiplications in the fraction \frac{1\times 75}{2\times 8}.
\frac{\sqrt{6}}{2}\left(\frac{16}{16}+\frac{75}{16}\right)\times \frac{5}{2}+\frac{31}{12}
Convert 1 to fraction \frac{16}{16}.
\frac{\sqrt{6}}{2}\times \frac{16+75}{16}\times \frac{5}{2}+\frac{31}{12}
Since \frac{16}{16} and \frac{75}{16} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}}{2}\times \frac{91}{16}\times \frac{5}{2}+\frac{31}{12}
Add 16 and 75 to get 91.
\frac{\sqrt{6}}{2}\times \frac{91\times 5}{16\times 2}+\frac{31}{12}
Multiply \frac{91}{16} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}}{2}\times \frac{455}{32}+\frac{31}{12}
Do the multiplications in the fraction \frac{91\times 5}{16\times 2}.
\frac{\sqrt{6}\times 455}{2\times 32}+\frac{31}{12}
Multiply \frac{\sqrt{6}}{2} times \frac{455}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{6}\times 455}{192}+\frac{31\times 16}{192}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 32 and 12 is 192. Multiply \frac{\sqrt{6}\times 455}{2\times 32} times \frac{3}{3}. Multiply \frac{31}{12} times \frac{16}{16}.
\frac{3\sqrt{6}\times 455+31\times 16}{192}
Since \frac{3\sqrt{6}\times 455}{192} and \frac{31\times 16}{192} have the same denominator, add them by adding their numerators.
\frac{1365\sqrt{6}+496}{192}
Do the multiplications in 3\sqrt{6}\times 455+31\times 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}