Evaluate
11.3
Factor
\frac{113}{2 \cdot 5} = 11\frac{3}{10} = 11.3
Share
Copied to clipboard
0.8-\sqrt{\frac{2\times 4+1}{4}}+\sqrt{144}
Calculate the square root of 0.64 and get 0.8.
0.8-\sqrt{\frac{8+1}{4}}+\sqrt{144}
Multiply 2 and 4 to get 8.
0.8-\sqrt{\frac{9}{4}}+\sqrt{144}
Add 8 and 1 to get 9.
0.8-\frac{3}{2}+\sqrt{144}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{4}{5}-\frac{3}{2}+\sqrt{144}
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{8}{10}-\frac{15}{10}+\sqrt{144}
Least common multiple of 5 and 2 is 10. Convert \frac{4}{5} and \frac{3}{2} to fractions with denominator 10.
\frac{8-15}{10}+\sqrt{144}
Since \frac{8}{10} and \frac{15}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{10}+\sqrt{144}
Subtract 15 from 8 to get -7.
-\frac{7}{10}+12
Calculate the square root of 144 and get 12.
-\frac{7}{10}+\frac{120}{10}
Convert 12 to fraction \frac{120}{10}.
\frac{-7+120}{10}
Since -\frac{7}{10} and \frac{120}{10} have the same denominator, add them by adding their numerators.
\frac{113}{10}
Add -7 and 120 to get 113.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}