\sqrt { 0.1 ( - 31 \% ) ^ { 2 } + 0.3 ( - 11 \% ) ^ { 2 } + 0.4 ( 4 \% ) ^ { 2 } + 0.2 ( 24 \% ) ^ { 2 } }
Evaluate
\frac{\sqrt{254}}{100}\approx 0.159373775
Share
Copied to clipboard
\sqrt{0.1\times \frac{961}{10000}+0.3\left(-\frac{11}{100}\right)^{2}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Calculate -\frac{31}{100} to the power of 2 and get \frac{961}{10000}.
\sqrt{\frac{961}{100000}+0.3\left(-\frac{11}{100}\right)^{2}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Multiply 0.1 and \frac{961}{10000} to get \frac{961}{100000}.
\sqrt{\frac{961}{100000}+0.3\times \frac{121}{10000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Calculate -\frac{11}{100} to the power of 2 and get \frac{121}{10000}.
\sqrt{\frac{961}{100000}+\frac{363}{100000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Multiply 0.3 and \frac{121}{10000} to get \frac{363}{100000}.
\sqrt{\frac{331}{25000}+0.4\times \left(\frac{4}{100}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Add \frac{961}{100000} and \frac{363}{100000} to get \frac{331}{25000}.
\sqrt{\frac{331}{25000}+0.4\times \left(\frac{1}{25}\right)^{2}+0.2\times \left(\frac{24}{100}\right)^{2}}
Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{331}{25000}+0.4\times \frac{1}{625}+0.2\times \left(\frac{24}{100}\right)^{2}}
Calculate \frac{1}{25} to the power of 2 and get \frac{1}{625}.
\sqrt{\frac{331}{25000}+\frac{2}{3125}+0.2\times \left(\frac{24}{100}\right)^{2}}
Multiply 0.4 and \frac{1}{625} to get \frac{2}{3125}.
\sqrt{\frac{347}{25000}+0.2\times \left(\frac{24}{100}\right)^{2}}
Add \frac{331}{25000} and \frac{2}{3125} to get \frac{347}{25000}.
\sqrt{\frac{347}{25000}+0.2\times \left(\frac{6}{25}\right)^{2}}
Reduce the fraction \frac{24}{100} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{347}{25000}+0.2\times \frac{36}{625}}
Calculate \frac{6}{25} to the power of 2 and get \frac{36}{625}.
\sqrt{\frac{347}{25000}+\frac{36}{3125}}
Multiply 0.2 and \frac{36}{625} to get \frac{36}{3125}.
\sqrt{\frac{127}{5000}}
Add \frac{347}{25000} and \frac{36}{3125} to get \frac{127}{5000}.
\frac{\sqrt{127}}{\sqrt{5000}}
Rewrite the square root of the division \sqrt{\frac{127}{5000}} as the division of square roots \frac{\sqrt{127}}{\sqrt{5000}}.
\frac{\sqrt{127}}{50\sqrt{2}}
Factor 5000=50^{2}\times 2. Rewrite the square root of the product \sqrt{50^{2}\times 2} as the product of square roots \sqrt{50^{2}}\sqrt{2}. Take the square root of 50^{2}.
\frac{\sqrt{127}\sqrt{2}}{50\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{127}}{50\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{127}\sqrt{2}}{50\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{254}}{50\times 2}
To multiply \sqrt{127} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{254}}{100}
Multiply 50 and 2 to get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}