\sqrt { 0.1 ( - 14.5 \% ) ^ { 2 } + 0.3 ( - 2.5 \% ) ^ { 2 } + 0.4 ( 2.5 \% ) ^ { 2 } + 0.2 ( 5.5 \% ) ^ { 2 } }
Evaluate
\frac{\sqrt{3145}}{1000}\approx 0.0560803
Share
Copied to clipboard
\sqrt{0.1\left(-\frac{145}{1000}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{14.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{0.1\left(-\frac{29}{200}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{145}{1000} to lowest terms by extracting and canceling out 5.
\sqrt{0.1\times \frac{841}{40000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate -\frac{29}{200} to the power of 2 and get \frac{841}{40000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.1 and \frac{841}{40000} to get \frac{841}{400000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{25}{1000}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{2.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{1}{40}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{25}{1000} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{841}{400000}+0.3\times \frac{1}{1600}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate -\frac{1}{40} to the power of 2 and get \frac{1}{1600}.
\sqrt{\frac{841}{400000}+\frac{3}{16000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.3 and \frac{1}{1600} to get \frac{3}{16000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Add \frac{841}{400000} and \frac{3}{16000} to get \frac{229}{100000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{25}{1000}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{2.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{1}{40}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{25}{1000} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{229}{100000}+0.4\times \frac{1}{1600}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate \frac{1}{40} to the power of 2 and get \frac{1}{1600}.
\sqrt{\frac{229}{100000}+\frac{1}{4000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.4 and \frac{1}{1600} to get \frac{1}{4000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Add \frac{229}{100000} and \frac{1}{4000} to get \frac{127}{50000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{55}{1000}\right)^{2}}
Expand \frac{5.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{11}{200}\right)^{2}}
Reduce the fraction \frac{55}{1000} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{127}{50000}+0.2\times \frac{121}{40000}}
Calculate \frac{11}{200} to the power of 2 and get \frac{121}{40000}.
\sqrt{\frac{127}{50000}+\frac{121}{200000}}
Multiply 0.2 and \frac{121}{40000} to get \frac{121}{200000}.
\sqrt{\frac{629}{200000}}
Add \frac{127}{50000} and \frac{121}{200000} to get \frac{629}{200000}.
\frac{\sqrt{629}}{\sqrt{200000}}
Rewrite the square root of the division \sqrt{\frac{629}{200000}} as the division of square roots \frac{\sqrt{629}}{\sqrt{200000}}.
\frac{\sqrt{629}}{200\sqrt{5}}
Factor 200000=200^{2}\times 5. Rewrite the square root of the product \sqrt{200^{2}\times 5} as the product of square roots \sqrt{200^{2}}\sqrt{5}. Take the square root of 200^{2}.
\frac{\sqrt{629}\sqrt{5}}{200\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{629}}{200\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{629}\sqrt{5}}{200\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3145}}{200\times 5}
To multiply \sqrt{629} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{3145}}{1000}
Multiply 200 and 5 to get 1000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}