Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{0.1\left(-\frac{145}{1000}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{14.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{0.1\left(-\frac{29}{200}\right)^{2}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{145}{1000} to lowest terms by extracting and canceling out 5.
\sqrt{0.1\times \frac{841}{40000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate -\frac{29}{200} to the power of 2 and get \frac{841}{40000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{2.5}{100}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.1 and \frac{841}{40000} to get \frac{841}{400000}.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{25}{1000}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{2.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{841}{400000}+0.3\left(-\frac{1}{40}\right)^{2}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{25}{1000} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{841}{400000}+0.3\times \frac{1}{1600}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate -\frac{1}{40} to the power of 2 and get \frac{1}{1600}.
\sqrt{\frac{841}{400000}+\frac{3}{16000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.3 and \frac{1}{1600} to get \frac{3}{16000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{2.5}{100}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Add \frac{841}{400000} and \frac{3}{16000} to get \frac{229}{100000}.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{25}{1000}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Expand \frac{2.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{229}{100000}+0.4\times \left(\frac{1}{40}\right)^{2}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Reduce the fraction \frac{25}{1000} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{229}{100000}+0.4\times \frac{1}{1600}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Calculate \frac{1}{40} to the power of 2 and get \frac{1}{1600}.
\sqrt{\frac{229}{100000}+\frac{1}{4000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Multiply 0.4 and \frac{1}{1600} to get \frac{1}{4000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{5.5}{100}\right)^{2}}
Add \frac{229}{100000} and \frac{1}{4000} to get \frac{127}{50000}.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{55}{1000}\right)^{2}}
Expand \frac{5.5}{100} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{127}{50000}+0.2\times \left(\frac{11}{200}\right)^{2}}
Reduce the fraction \frac{55}{1000} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{127}{50000}+0.2\times \frac{121}{40000}}
Calculate \frac{11}{200} to the power of 2 and get \frac{121}{40000}.
\sqrt{\frac{127}{50000}+\frac{121}{200000}}
Multiply 0.2 and \frac{121}{40000} to get \frac{121}{200000}.
\sqrt{\frac{629}{200000}}
Add \frac{127}{50000} and \frac{121}{200000} to get \frac{629}{200000}.
\frac{\sqrt{629}}{\sqrt{200000}}
Rewrite the square root of the division \sqrt{\frac{629}{200000}} as the division of square roots \frac{\sqrt{629}}{\sqrt{200000}}.
\frac{\sqrt{629}}{200\sqrt{5}}
Factor 200000=200^{2}\times 5. Rewrite the square root of the product \sqrt{200^{2}\times 5} as the product of square roots \sqrt{200^{2}}\sqrt{5}. Take the square root of 200^{2}.
\frac{\sqrt{629}\sqrt{5}}{200\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{629}}{200\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{629}\sqrt{5}}{200\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{3145}}{200\times 5}
To multiply \sqrt{629} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{3145}}{1000}
Multiply 200 and 5 to get 1000.