Solve for x
x=-5
x=-9
Graph
Share
Copied to clipboard
\left(\sqrt{-45-14x}\right)^{2}=\left(-x\right)^{2}
Square both sides of the equation.
-45-14x=\left(-x\right)^{2}
Calculate \sqrt{-45-14x} to the power of 2 and get -45-14x.
-45-14x=x^{2}
Calculate -x to the power of 2 and get x^{2}.
-45-14x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-14x-45=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-14 ab=-\left(-45\right)=45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-5 b=-9
The solution is the pair that gives sum -14.
\left(-x^{2}-5x\right)+\left(-9x-45\right)
Rewrite -x^{2}-14x-45 as \left(-x^{2}-5x\right)+\left(-9x-45\right).
x\left(-x-5\right)+9\left(-x-5\right)
Factor out x in the first and 9 in the second group.
\left(-x-5\right)\left(x+9\right)
Factor out common term -x-5 by using distributive property.
x=-5 x=-9
To find equation solutions, solve -x-5=0 and x+9=0.
\sqrt{-45-14\left(-5\right)}=-\left(-5\right)
Substitute -5 for x in the equation \sqrt{-45-14x}=-x.
5=5
Simplify. The value x=-5 satisfies the equation.
\sqrt{-45-14\left(-9\right)}=-\left(-9\right)
Substitute -9 for x in the equation \sqrt{-45-14x}=-x.
9=9
Simplify. The value x=-9 satisfies the equation.
x=-5 x=-9
List all solutions of \sqrt{-14x-45}=-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}