Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{10}i\sqrt{-40}
Factor -10=10\left(-1\right). Rewrite the square root of the product \sqrt{10\left(-1\right)} as the product of square roots \sqrt{10}\sqrt{-1}. By definition, the square root of -1 is i.
\sqrt{10}i\times \left(2i\right)\sqrt{10}
Factor -40=\left(2i\right)^{2}\times 10. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 10} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{10}. Take the square root of \left(2i\right)^{2}.
\sqrt{10}\left(-2\right)\sqrt{10}
Multiply i and 2i to get -2.
10\left(-2\right)
Multiply \sqrt{10} and \sqrt{10} to get 10.
-20
Multiply 10 and -2 to get -20.
Re(\sqrt{10}i\sqrt{-40})
Factor -10=10\left(-1\right). Rewrite the square root of the product \sqrt{10\left(-1\right)} as the product of square roots \sqrt{10}\sqrt{-1}. By definition, the square root of -1 is i.
Re(\sqrt{10}i\times \left(2i\right)\sqrt{10})
Factor -40=\left(2i\right)^{2}\times 10. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 10} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{10}. Take the square root of \left(2i\right)^{2}.
Re(\sqrt{10}\left(-2\right)\sqrt{10})
Multiply i and 2i to get -2.
Re(10\left(-2\right))
Multiply \sqrt{10} and \sqrt{10} to get 10.
Re(-20)
Multiply 10 and -2 to get -20.
-20
The real part of -20 is -20.