Evaluate
\frac{44}{5}=8.8
Factor
\frac{2 ^ {2} \cdot 11}{5} = 8\frac{4}{5} = 8.8
Share
Copied to clipboard
\sqrt{-\frac{66}{25}+\frac{550}{25}}-\frac{5}{3}\left(-\frac{66}{25}\right)
Convert 22 to fraction \frac{550}{25}.
\sqrt{\frac{-66+550}{25}}-\frac{5}{3}\left(-\frac{66}{25}\right)
Since -\frac{66}{25} and \frac{550}{25} have the same denominator, add them by adding their numerators.
\sqrt{\frac{484}{25}}-\frac{5}{3}\left(-\frac{66}{25}\right)
Add -66 and 550 to get 484.
\frac{22}{5}-\frac{5}{3}\left(-\frac{66}{25}\right)
Rewrite the square root of the division \frac{484}{25} as the division of square roots \frac{\sqrt{484}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{22}{5}-\frac{5\left(-66\right)}{3\times 25}
Multiply \frac{5}{3} times -\frac{66}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{22}{5}-\frac{-330}{75}
Do the multiplications in the fraction \frac{5\left(-66\right)}{3\times 25}.
\frac{22}{5}-\left(-\frac{22}{5}\right)
Reduce the fraction \frac{-330}{75} to lowest terms by extracting and canceling out 15.
\frac{22}{5}+\frac{22}{5}
The opposite of -\frac{22}{5} is \frac{22}{5}.
\frac{22+22}{5}
Since \frac{22}{5} and \frac{22}{5} have the same denominator, add them by adding their numerators.
\frac{44}{5}
Add 22 and 22 to get 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}