Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(x-2\right)^{2}+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+4+y^{2}} to the power of 2 and get x^{2}-4x+4+y^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+y^{2}-4y+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-4x+4+y^{2}=x^{2}+y^{2}-4y+4
Calculate \sqrt{x^{2}+y^{2}-4y+4} to the power of 2 and get x^{2}+y^{2}-4y+4.
x^{2}-4x+4+y^{2}-x^{2}=y^{2}-4y+4
Subtract x^{2} from both sides.
-4x+4+y^{2}=y^{2}-4y+4
Combine x^{2} and -x^{2} to get 0.
-4x+y^{2}=y^{2}-4y+4-4
Subtract 4 from both sides.
-4x+y^{2}=y^{2}-4y
Subtract 4 from 4 to get 0.
-4x=y^{2}-4y-y^{2}
Subtract y^{2} from both sides.
-4x=-4y
Combine y^{2} and -y^{2} to get 0.
x=y
Cancel out -4 on both sides.
\sqrt{\left(y-2\right)^{2}+y^{2}}=\sqrt{y^{2}+\left(y-2\right)^{2}}
Substitute y for x in the equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{x^{2}+\left(y-2\right)^{2}}.
\left(\left(y-2\right)^{2}+y^{2}\right)^{\frac{1}{2}}=\left(\left(y-2\right)^{2}+y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=y satisfies the equation.
x=y
Equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{\left(y-2\right)^{2}+x^{2}} has a unique solution.
\left(\sqrt{\left(x-2\right)^{2}+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+4+y^{2}} to the power of 2 and get x^{2}-4x+4+y^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+y^{2}-4y+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-4x+4+y^{2}=x^{2}+y^{2}-4y+4
Calculate \sqrt{x^{2}+y^{2}-4y+4} to the power of 2 and get x^{2}+y^{2}-4y+4.
x^{2}-4x+4+y^{2}-y^{2}=x^{2}-4y+4
Subtract y^{2} from both sides.
x^{2}-4x+4=x^{2}-4y+4
Combine y^{2} and -y^{2} to get 0.
x^{2}-4y+4=x^{2}-4x+4
Swap sides so that all variable terms are on the left hand side.
-4y+4=x^{2}-4x+4-x^{2}
Subtract x^{2} from both sides.
-4y+4=-4x+4
Combine x^{2} and -x^{2} to get 0.
-4y=-4x+4-4
Subtract 4 from both sides.
-4y=-4x
Subtract 4 from 4 to get 0.
y=x
Cancel out -4 on both sides.
\sqrt{\left(x-2\right)^{2}+x^{2}}=\sqrt{x^{2}+\left(x-2\right)^{2}}
Substitute x for y in the equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{x^{2}+\left(y-2\right)^{2}}.
\left(\left(x-2\right)^{2}+x^{2}\right)^{\frac{1}{2}}=\left(\left(x-2\right)^{2}+x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=x satisfies the equation.
y=x
Equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{\left(y-2\right)^{2}+x^{2}} has a unique solution.