Solve for x
x=y
Solve for y
y=x
Graph
Share
Copied to clipboard
\left(\sqrt{\left(x-2\right)^{2}+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+4+y^{2}} to the power of 2 and get x^{2}-4x+4+y^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+y^{2}-4y+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-4x+4+y^{2}=x^{2}+y^{2}-4y+4
Calculate \sqrt{x^{2}+y^{2}-4y+4} to the power of 2 and get x^{2}+y^{2}-4y+4.
x^{2}-4x+4+y^{2}-x^{2}=y^{2}-4y+4
Subtract x^{2} from both sides.
-4x+4+y^{2}=y^{2}-4y+4
Combine x^{2} and -x^{2} to get 0.
-4x+y^{2}=y^{2}-4y+4-4
Subtract 4 from both sides.
-4x+y^{2}=y^{2}-4y
Subtract 4 from 4 to get 0.
-4x=y^{2}-4y-y^{2}
Subtract y^{2} from both sides.
-4x=-4y
Combine y^{2} and -y^{2} to get 0.
x=y
Cancel out -4 on both sides.
\sqrt{\left(y-2\right)^{2}+y^{2}}=\sqrt{y^{2}+\left(y-2\right)^{2}}
Substitute y for x in the equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{x^{2}+\left(y-2\right)^{2}}.
\left(\left(y-2\right)^{2}+y^{2}\right)^{\frac{1}{2}}=\left(\left(y-2\right)^{2}+y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=y satisfies the equation.
x=y
Equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{\left(y-2\right)^{2}+x^{2}} has a unique solution.
\left(\sqrt{\left(x-2\right)^{2}+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+y^{2}}\right)^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+\left(y-2\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+4+y^{2}} to the power of 2 and get x^{2}-4x+4+y^{2}.
x^{2}-4x+4+y^{2}=\left(\sqrt{x^{2}+y^{2}-4y+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-4x+4+y^{2}=x^{2}+y^{2}-4y+4
Calculate \sqrt{x^{2}+y^{2}-4y+4} to the power of 2 and get x^{2}+y^{2}-4y+4.
x^{2}-4x+4+y^{2}-y^{2}=x^{2}-4y+4
Subtract y^{2} from both sides.
x^{2}-4x+4=x^{2}-4y+4
Combine y^{2} and -y^{2} to get 0.
x^{2}-4y+4=x^{2}-4x+4
Swap sides so that all variable terms are on the left hand side.
-4y+4=x^{2}-4x+4-x^{2}
Subtract x^{2} from both sides.
-4y+4=-4x+4
Combine x^{2} and -x^{2} to get 0.
-4y=-4x+4-4
Subtract 4 from both sides.
-4y=-4x
Subtract 4 from 4 to get 0.
y=x
Cancel out -4 on both sides.
\sqrt{\left(x-2\right)^{2}+x^{2}}=\sqrt{x^{2}+\left(x-2\right)^{2}}
Substitute x for y in the equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{x^{2}+\left(y-2\right)^{2}}.
\left(\left(x-2\right)^{2}+x^{2}\right)^{\frac{1}{2}}=\left(\left(x-2\right)^{2}+x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=x satisfies the equation.
y=x
Equation \sqrt{\left(x-2\right)^{2}+y^{2}}=\sqrt{\left(y-2\right)^{2}+x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}