Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+8+y^{2}-4y} to the power of 2 and get x^{2}-4x+8+y^{2}-4y.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
The opposite of -2 is 2.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
Add 4 and 16 to get 20.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
Calculate \sqrt{x^{2}+4x+20+y^{2}-8y} to the power of 2 and get x^{2}+4x+20+y^{2}-8y.
x^{2}-4x+8+y^{2}-4y-x^{2}=4x+20+y^{2}-8y
Subtract x^{2} from both sides.
-4x+8+y^{2}-4y=4x+20+y^{2}-8y
Combine x^{2} and -x^{2} to get 0.
-4x+8+y^{2}-4y-4x=20+y^{2}-8y
Subtract 4x from both sides.
-8x+8+y^{2}-4y=20+y^{2}-8y
Combine -4x and -4x to get -8x.
-8x+y^{2}-4y=20+y^{2}-8y-8
Subtract 8 from both sides.
-8x+y^{2}-4y=12+y^{2}-8y
Subtract 8 from 20 to get 12.
-8x-4y=12+y^{2}-8y-y^{2}
Subtract y^{2} from both sides.
-8x-4y=12-8y
Combine y^{2} and -y^{2} to get 0.
-8x=12-8y+4y
Add 4y to both sides.
-8x=12-4y
Combine -8y and 4y to get -4y.
\frac{-8x}{-8}=\frac{12-4y}{-8}
Divide both sides by -8.
x=\frac{12-4y}{-8}
Dividing by -8 undoes the multiplication by -8.
x=\frac{y-3}{2}
Divide 12-4y by -8.
\sqrt{\left(\frac{y-3}{2}-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(\frac{y-3}{2}-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}
Substitute \frac{y-3}{2} for x in the equation \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}.
\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{y-3}{2} satisfies the equation.
x=\frac{y-3}{2}
Equation \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} has a unique solution.
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Add 4 and 4 to get 8.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Calculate \sqrt{x^{2}-4x+8+y^{2}-4y} to the power of 2 and get x^{2}-4x+8+y^{2}-4y.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
The opposite of -2 is 2.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
Add 4 and 16 to get 20.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
Calculate \sqrt{x^{2}+4x+20+y^{2}-8y} to the power of 2 and get x^{2}+4x+20+y^{2}-8y.
x^{2}-4x+8+y^{2}-4y-y^{2}=x^{2}+4x+20-8y
Subtract y^{2} from both sides.
x^{2}-4x+8-4y=x^{2}+4x+20-8y
Combine y^{2} and -y^{2} to get 0.
x^{2}-4x+8-4y+8y=x^{2}+4x+20
Add 8y to both sides.
x^{2}-4x+8+4y=x^{2}+4x+20
Combine -4y and 8y to get 4y.
-4x+8+4y=x^{2}+4x+20-x^{2}
Subtract x^{2} from both sides.
-4x+8+4y=4x+20
Combine x^{2} and -x^{2} to get 0.
8+4y=4x+20+4x
Add 4x to both sides.
8+4y=8x+20
Combine 4x and 4x to get 8x.
4y=8x+20-8
Subtract 8 from both sides.
4y=8x+12
Subtract 8 from 20 to get 12.
\frac{4y}{4}=\frac{8x+12}{4}
Divide both sides by 4.
y=\frac{8x+12}{4}
Dividing by 4 undoes the multiplication by 4.
y=2x+3
Divide 8x+12 by 4.
\sqrt{\left(x-2\right)^{2}+\left(2x+3-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(2x+3-4\right)^{2}}
Substitute 2x+3 for y in the equation \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}.
\left(5+5x^{2}\right)^{\frac{1}{2}}=\left(5+5x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=2x+3 satisfies the equation.
y=2x+3
Equation \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} has a unique solution.