Solve for x
x=\frac{y-1}{3}
Solve for y
y=3x+1
Graph
Share
Copied to clipboard
\left(\sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+6x+9+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
\left(\sqrt{x^{2}+6x+9+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{x^{2}+6x+13+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Add 9 and 4 to get 13.
x^{2}+6x+13+y^{2}-4y=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Calculate \sqrt{x^{2}+6x+13+y^{2}-4y} to the power of 2 and get x^{2}+6x+13+y^{2}-4y.
x^{2}+6x+13+y^{2}-4y=\left(\sqrt{x^{2}-6x+9+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+6x+13+y^{2}-4y=x^{2}-6x+9+y^{2}
Calculate \sqrt{x^{2}-6x+9+y^{2}} to the power of 2 and get x^{2}-6x+9+y^{2}.
x^{2}+6x+13+y^{2}-4y-x^{2}=-6x+9+y^{2}
Subtract x^{2} from both sides.
6x+13+y^{2}-4y=-6x+9+y^{2}
Combine x^{2} and -x^{2} to get 0.
6x+13+y^{2}-4y+6x=9+y^{2}
Add 6x to both sides.
12x+13+y^{2}-4y=9+y^{2}
Combine 6x and 6x to get 12x.
12x+y^{2}-4y=9+y^{2}-13
Subtract 13 from both sides.
12x+y^{2}-4y=-4+y^{2}
Subtract 13 from 9 to get -4.
12x-4y=-4+y^{2}-y^{2}
Subtract y^{2} from both sides.
12x-4y=-4
Combine y^{2} and -y^{2} to get 0.
12x=-4+4y
Add 4y to both sides.
12x=4y-4
The equation is in standard form.
\frac{12x}{12}=\frac{4y-4}{12}
Divide both sides by 12.
x=\frac{4y-4}{12}
Dividing by 12 undoes the multiplication by 12.
x=\frac{y-1}{3}
Divide -4+4y by 12.
\sqrt{\left(\frac{y-1}{3}+3\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(\frac{y-1}{3}-3\right)^{2}+y^{2}}
Substitute \frac{y-1}{3} for x in the equation \sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-3\right)^{2}+y^{2}}.
\frac{1}{3}\left(100-20y+10y^{2}\right)^{\frac{1}{2}}=\frac{1}{3}\left(\left(y-10\right)^{2}+9y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{y-1}{3} satisfies the equation.
x=\frac{y-1}{3}
Equation \sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-3\right)^{2}+y^{2}} has a unique solution.
\left(\sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+6x+9+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
\left(\sqrt{x^{2}+6x+9+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
\left(\sqrt{x^{2}+6x+13+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Add 9 and 4 to get 13.
x^{2}+6x+13+y^{2}-4y=\left(\sqrt{\left(x-3\right)^{2}+y^{2}}\right)^{2}
Calculate \sqrt{x^{2}+6x+13+y^{2}-4y} to the power of 2 and get x^{2}+6x+13+y^{2}-4y.
x^{2}+6x+13+y^{2}-4y=\left(\sqrt{x^{2}-6x+9+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+6x+13+y^{2}-4y=x^{2}-6x+9+y^{2}
Calculate \sqrt{x^{2}-6x+9+y^{2}} to the power of 2 and get x^{2}-6x+9+y^{2}.
x^{2}+6x+13+y^{2}-4y-y^{2}=x^{2}-6x+9
Subtract y^{2} from both sides.
x^{2}+6x+13-4y=x^{2}-6x+9
Combine y^{2} and -y^{2} to get 0.
6x+13-4y=x^{2}-6x+9-x^{2}
Subtract x^{2} from both sides.
6x+13-4y=-6x+9
Combine x^{2} and -x^{2} to get 0.
13-4y=-6x+9-6x
Subtract 6x from both sides.
13-4y=-12x+9
Combine -6x and -6x to get -12x.
-4y=-12x+9-13
Subtract 13 from both sides.
-4y=-12x-4
Subtract 13 from 9 to get -4.
\frac{-4y}{-4}=\frac{-12x-4}{-4}
Divide both sides by -4.
y=\frac{-12x-4}{-4}
Dividing by -4 undoes the multiplication by -4.
y=3x+1
Divide -12x-4 by -4.
\sqrt{\left(x+3\right)^{2}+\left(3x+1-2\right)^{2}}=\sqrt{\left(x-3\right)^{2}+\left(3x+1\right)^{2}}
Substitute 3x+1 for y in the equation \sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-3\right)^{2}+y^{2}}.
\left(10+10x^{2}\right)^{\frac{1}{2}}=\left(10+10x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=3x+1 satisfies the equation.
y=3x+1
Equation \sqrt{\left(x+3\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-3\right)^{2}+y^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}