Solve for x
x=\frac{1}{4}=0.25
Graph
Quiz
Algebra
5 problems similar to:
\sqrt { ( x + 2 ) ^ { 2 } + 9 } + \sqrt { ( x - 1 ) ^ { 2 } + 1 } = 5
Share
Copied to clipboard
\sqrt{\left(x+2\right)^{2}+9}=5-\sqrt{\left(x-1\right)^{2}+1}
Subtract \sqrt{\left(x-1\right)^{2}+1} from both sides of the equation.
\sqrt{x^{2}+4x+4+9}=5-\sqrt{\left(x-1\right)^{2}+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\sqrt{x^{2}+4x+13}=5-\sqrt{\left(x-1\right)^{2}+1}
Add 4 and 9 to get 13.
\sqrt{x^{2}+4x+13}=5-\sqrt{x^{2}-2x+1+1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\sqrt{x^{2}+4x+13}=5-\sqrt{x^{2}-2x+2}
Add 1 and 1 to get 2.
\left(\sqrt{x^{2}+4x+13}\right)^{2}=\left(5-\sqrt{x^{2}-2x+2}\right)^{2}
Square both sides of the equation.
x^{2}+4x+13=\left(5-\sqrt{x^{2}-2x+2}\right)^{2}
Calculate \sqrt{x^{2}+4x+13} to the power of 2 and get x^{2}+4x+13.
x^{2}+4x+13=25-10\sqrt{x^{2}-2x+2}+\left(\sqrt{x^{2}-2x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x^{2}-2x+2}\right)^{2}.
x^{2}+4x+13=25-10\sqrt{x^{2}-2x+2}+x^{2}-2x+2
Calculate \sqrt{x^{2}-2x+2} to the power of 2 and get x^{2}-2x+2.
x^{2}+4x+13=27-10\sqrt{x^{2}-2x+2}+x^{2}-2x
Add 25 and 2 to get 27.
x^{2}+4x+13-\left(27+x^{2}-2x\right)=-10\sqrt{x^{2}-2x+2}
Subtract 27+x^{2}-2x from both sides of the equation.
x^{2}+4x+13-27-x^{2}+2x=-10\sqrt{x^{2}-2x+2}
To find the opposite of 27+x^{2}-2x, find the opposite of each term.
x^{2}+4x-14-x^{2}+2x=-10\sqrt{x^{2}-2x+2}
Subtract 27 from 13 to get -14.
4x-14+2x=-10\sqrt{x^{2}-2x+2}
Combine x^{2} and -x^{2} to get 0.
6x-14=-10\sqrt{x^{2}-2x+2}
Combine 4x and 2x to get 6x.
\left(6x-14\right)^{2}=\left(-10\sqrt{x^{2}-2x+2}\right)^{2}
Square both sides of the equation.
36x^{2}-168x+196=\left(-10\sqrt{x^{2}-2x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-14\right)^{2}.
36x^{2}-168x+196=\left(-10\right)^{2}\left(\sqrt{x^{2}-2x+2}\right)^{2}
Expand \left(-10\sqrt{x^{2}-2x+2}\right)^{2}.
36x^{2}-168x+196=100\left(\sqrt{x^{2}-2x+2}\right)^{2}
Calculate -10 to the power of 2 and get 100.
36x^{2}-168x+196=100\left(x^{2}-2x+2\right)
Calculate \sqrt{x^{2}-2x+2} to the power of 2 and get x^{2}-2x+2.
36x^{2}-168x+196=100x^{2}-200x+200
Use the distributive property to multiply 100 by x^{2}-2x+2.
36x^{2}-168x+196-100x^{2}=-200x+200
Subtract 100x^{2} from both sides.
-64x^{2}-168x+196=-200x+200
Combine 36x^{2} and -100x^{2} to get -64x^{2}.
-64x^{2}-168x+196+200x=200
Add 200x to both sides.
-64x^{2}+32x+196=200
Combine -168x and 200x to get 32x.
-64x^{2}+32x+196-200=0
Subtract 200 from both sides.
-64x^{2}+32x-4=0
Subtract 200 from 196 to get -4.
-16x^{2}+8x-1=0
Divide both sides by 4.
a+b=8 ab=-16\left(-1\right)=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -16x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
1,16 2,8 4,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 16.
1+16=17 2+8=10 4+4=8
Calculate the sum for each pair.
a=4 b=4
The solution is the pair that gives sum 8.
\left(-16x^{2}+4x\right)+\left(4x-1\right)
Rewrite -16x^{2}+8x-1 as \left(-16x^{2}+4x\right)+\left(4x-1\right).
-4x\left(4x-1\right)+4x-1
Factor out -4x in -16x^{2}+4x.
\left(4x-1\right)\left(-4x+1\right)
Factor out common term 4x-1 by using distributive property.
x=\frac{1}{4} x=\frac{1}{4}
To find equation solutions, solve 4x-1=0 and -4x+1=0.
\sqrt{\left(\frac{1}{4}+2\right)^{2}+9}+\sqrt{\left(\frac{1}{4}-1\right)^{2}+1}=5
Substitute \frac{1}{4} for x in the equation \sqrt{\left(x+2\right)^{2}+9}+\sqrt{\left(x-1\right)^{2}+1}=5.
5=5
Simplify. The value x=\frac{1}{4} satisfies the equation.
\sqrt{\left(\frac{1}{4}+2\right)^{2}+9}+\sqrt{\left(\frac{1}{4}-1\right)^{2}+1}=5
Substitute \frac{1}{4} for x in the equation \sqrt{\left(x+2\right)^{2}+9}+\sqrt{\left(x-1\right)^{2}+1}=5.
5=5
Simplify. The value x=\frac{1}{4} satisfies the equation.
x=\frac{1}{4} x=\frac{1}{4}
List all solutions of \sqrt{x^{2}+4x+13}=-\sqrt{x^{2}-2x+2}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}