Solve for x
x=2
x=-1
Graph
Share
Copied to clipboard
\left(\sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+2x+1+\left(2x\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(\sqrt{x^{2}+2x+1+2^{2}x^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Expand \left(2x\right)^{2}.
\left(\sqrt{x^{2}+2x+1+4x^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
\left(\sqrt{5x^{2}+2x+1}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+2x+1=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Calculate \sqrt{5x^{2}+2x+1} to the power of 2 and get 5x^{2}+2x+1.
5x^{2}+2x+1=\left(\sqrt{x^{2}+6x+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
5x^{2}+2x+1=x^{2}+6x+9
Calculate \sqrt{x^{2}+6x+9} to the power of 2 and get x^{2}+6x+9.
5x^{2}+2x+1-x^{2}=6x+9
Subtract x^{2} from both sides.
4x^{2}+2x+1=6x+9
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}+2x+1-6x=9
Subtract 6x from both sides.
4x^{2}-4x+1=9
Combine 2x and -6x to get -4x.
4x^{2}-4x+1-9=0
Subtract 9 from both sides.
4x^{2}-4x-8=0
Subtract 9 from 1 to get -8.
x^{2}-x-2=0
Divide both sides by 4.
a+b=-1 ab=1\left(-2\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(x-2\right)
Rewrite x^{2}-x-2 as \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Factor out x in x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Factor out common term x-2 by using distributive property.
x=2 x=-1
To find equation solutions, solve x-2=0 and x+1=0.
\sqrt{\left(2+1\right)^{2}+\left(2\times 2\right)^{2}}=\sqrt{\left(2+3\right)^{2}}
Substitute 2 for x in the equation \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.
5=5
Simplify. The value x=2 satisfies the equation.
\sqrt{\left(-1+1\right)^{2}+\left(2\left(-1\right)\right)^{2}}=\sqrt{\left(-1+3\right)^{2}}
Substitute -1 for x in the equation \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.
2=2
Simplify. The value x=-1 satisfies the equation.
x=2 x=-1
List all solutions of \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}