Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+2x+1+\left(2x\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(\sqrt{x^{2}+2x+1+2^{2}x^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Expand \left(2x\right)^{2}.
\left(\sqrt{x^{2}+2x+1+4x^{2}}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
\left(\sqrt{5x^{2}+2x+1}\right)^{2}=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+2x+1=\left(\sqrt{\left(x+3\right)^{2}}\right)^{2}
Calculate \sqrt{5x^{2}+2x+1} to the power of 2 and get 5x^{2}+2x+1.
5x^{2}+2x+1=\left(\sqrt{x^{2}+6x+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
5x^{2}+2x+1=x^{2}+6x+9
Calculate \sqrt{x^{2}+6x+9} to the power of 2 and get x^{2}+6x+9.
5x^{2}+2x+1-x^{2}=6x+9
Subtract x^{2} from both sides.
4x^{2}+2x+1=6x+9
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}+2x+1-6x=9
Subtract 6x from both sides.
4x^{2}-4x+1=9
Combine 2x and -6x to get -4x.
4x^{2}-4x+1-9=0
Subtract 9 from both sides.
4x^{2}-4x-8=0
Subtract 9 from 1 to get -8.
x^{2}-x-2=0
Divide both sides by 4.
a+b=-1 ab=1\left(-2\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(x-2\right)
Rewrite x^{2}-x-2 as \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Factor out x in x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Factor out common term x-2 by using distributive property.
x=2 x=-1
To find equation solutions, solve x-2=0 and x+1=0.
\sqrt{\left(2+1\right)^{2}+\left(2\times 2\right)^{2}}=\sqrt{\left(2+3\right)^{2}}
Substitute 2 for x in the equation \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.
5=5
Simplify. The value x=2 satisfies the equation.
\sqrt{\left(-1+1\right)^{2}+\left(2\left(-1\right)\right)^{2}}=\sqrt{\left(-1+3\right)^{2}}
Substitute -1 for x in the equation \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.
2=2
Simplify. The value x=-1 satisfies the equation.
x=2 x=-1
List all solutions of \sqrt{\left(x+1\right)^{2}+\left(2x\right)^{2}}=\sqrt{\left(x+3\right)^{2}}.