Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{8\times 2\left(\frac{1}{2}+8\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
\sqrt{16\left(\frac{1}{2}+8\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Multiply 8 and 2 to get 16.
\sqrt{16\left(\frac{1}{2}+\frac{16}{2}\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Convert 8 to fraction \frac{16}{2}.
\sqrt{16\times \frac{1+16}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Since \frac{1}{2} and \frac{16}{2} have the same denominator, add them by adding their numerators.
\sqrt{16\times \frac{17}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Add 1 and 16 to get 17.
\sqrt{\frac{16\times 17}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Express 16\times \frac{17}{2} as a single fraction.
\sqrt{\frac{272}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Multiply 16 and 17 to get 272.
\sqrt{136+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Divide 272 by 2 to get 136.
\sqrt{138}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Add 136 and 2 to get 138.
\sqrt{138}-\sqrt{8\times 2\left(\frac{1}{2}+8\right)-2}
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
\sqrt{138}-\sqrt{16\left(\frac{1}{2}+8\right)-2}
Multiply 8 and 2 to get 16.
\sqrt{138}-\sqrt{16\left(\frac{1}{2}+\frac{16}{2}\right)-2}
Convert 8 to fraction \frac{16}{2}.
\sqrt{138}-\sqrt{16\times \frac{1+16}{2}-2}
Since \frac{1}{2} and \frac{16}{2} have the same denominator, add them by adding their numerators.
\sqrt{138}-\sqrt{16\times \frac{17}{2}-2}
Add 1 and 16 to get 17.
\sqrt{138}-\sqrt{\frac{16\times 17}{2}-2}
Express 16\times \frac{17}{2} as a single fraction.
\sqrt{138}-\sqrt{\frac{272}{2}-2}
Multiply 16 and 17 to get 272.
\sqrt{138}-\sqrt{136-2}
Divide 272 by 2 to get 136.
\sqrt{138}-\sqrt{134}
Subtract 2 from 136 to get 134.