Evaluate
\sqrt{138}-\sqrt{134}\approx 0.171503222
Share
Copied to clipboard
\sqrt{8\times 2\left(\frac{1}{2}+8\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
\sqrt{16\left(\frac{1}{2}+8\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Multiply 8 and 2 to get 16.
\sqrt{16\left(\frac{1}{2}+\frac{16}{2}\right)+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Convert 8 to fraction \frac{16}{2}.
\sqrt{16\times \frac{1+16}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Since \frac{1}{2} and \frac{16}{2} have the same denominator, add them by adding their numerators.
\sqrt{16\times \frac{17}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Add 1 and 16 to get 17.
\sqrt{\frac{16\times 17}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Express 16\times \frac{17}{2} as a single fraction.
\sqrt{\frac{272}{2}+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Multiply 16 and 17 to get 272.
\sqrt{136+2}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Divide 272 by 2 to get 136.
\sqrt{138}-\sqrt{\frac{8}{\frac{1}{2}}\left(\frac{1}{2}+8\right)-2}
Add 136 and 2 to get 138.
\sqrt{138}-\sqrt{8\times 2\left(\frac{1}{2}+8\right)-2}
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
\sqrt{138}-\sqrt{16\left(\frac{1}{2}+8\right)-2}
Multiply 8 and 2 to get 16.
\sqrt{138}-\sqrt{16\left(\frac{1}{2}+\frac{16}{2}\right)-2}
Convert 8 to fraction \frac{16}{2}.
\sqrt{138}-\sqrt{16\times \frac{1+16}{2}-2}
Since \frac{1}{2} and \frac{16}{2} have the same denominator, add them by adding their numerators.
\sqrt{138}-\sqrt{16\times \frac{17}{2}-2}
Add 1 and 16 to get 17.
\sqrt{138}-\sqrt{\frac{16\times 17}{2}-2}
Express 16\times \frac{17}{2} as a single fraction.
\sqrt{138}-\sqrt{\frac{272}{2}-2}
Multiply 16 and 17 to get 272.
\sqrt{138}-\sqrt{136-2}
Divide 272 by 2 to get 136.
\sqrt{138}-\sqrt{134}
Subtract 2 from 136 to get 134.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}