Solve for x
x=y+2
Solve for y
y=x-2
Graph
Share
Copied to clipboard
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-y\right)^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Add 49 and 1 to get 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Calculate \sqrt{50-14x+x^{2}-2y+y^{2}} to the power of 2 and get 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Add 9 and 25 to get 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Calculate \sqrt{34-6x+x^{2}-10y+y^{2}} to the power of 2 and get 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+6x=34+x^{2}-10y+y^{2}
Add 6x to both sides.
50-8x+x^{2}-2y+y^{2}=34+x^{2}-10y+y^{2}
Combine -14x and 6x to get -8x.
50-8x+x^{2}-2y+y^{2}-x^{2}=34-10y+y^{2}
Subtract x^{2} from both sides.
50-8x-2y+y^{2}=34-10y+y^{2}
Combine x^{2} and -x^{2} to get 0.
-8x-2y+y^{2}=34-10y+y^{2}-50
Subtract 50 from both sides.
-8x-2y+y^{2}=-16-10y+y^{2}
Subtract 50 from 34 to get -16.
-8x+y^{2}=-16-10y+y^{2}+2y
Add 2y to both sides.
-8x+y^{2}=-16-8y+y^{2}
Combine -10y and 2y to get -8y.
-8x=-16-8y+y^{2}-y^{2}
Subtract y^{2} from both sides.
-8x=-16-8y
Combine y^{2} and -y^{2} to get 0.
-8x=-8y-16
The equation is in standard form.
\frac{-8x}{-8}=\frac{-8y-16}{-8}
Divide both sides by -8.
x=\frac{-8y-16}{-8}
Dividing by -8 undoes the multiplication by -8.
x=y+2
Divide -16-8y by -8.
\sqrt{\left(7-\left(y+2\right)\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-\left(y+2\right)\right)^{2}+\left(5-y\right)^{2}}
Substitute y+2 for x in the equation \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2y^{2}-12y+26\right)^{\frac{1}{2}}=\left(2y^{2}-12y+26\right)^{\frac{1}{2}}
Simplify. The value x=y+2 satisfies the equation.
x=y+2
Equation \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} has a unique solution.
\left(\sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{49-14x+x^{2}+\left(1-y\right)^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
\left(\sqrt{49-14x+x^{2}+1-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-y\right)^{2}.
\left(\sqrt{50-14x+x^{2}-2y+y^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Add 49 and 1 to get 50.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}\right)^{2}
Calculate \sqrt{50-14x+x^{2}-2y+y^{2}} to the power of 2 and get 50-14x+x^{2}-2y+y^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+\left(5-y\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{9-6x+x^{2}+25-10y+y^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-y\right)^{2}.
50-14x+x^{2}-2y+y^{2}=\left(\sqrt{34-6x+x^{2}-10y+y^{2}}\right)^{2}
Add 9 and 25 to get 34.
50-14x+x^{2}-2y+y^{2}=34-6x+x^{2}-10y+y^{2}
Calculate \sqrt{34-6x+x^{2}-10y+y^{2}} to the power of 2 and get 34-6x+x^{2}-10y+y^{2}.
50-14x+x^{2}-2y+y^{2}+10y=34-6x+x^{2}+y^{2}
Add 10y to both sides.
50-14x+x^{2}+8y+y^{2}=34-6x+x^{2}+y^{2}
Combine -2y and 10y to get 8y.
50-14x+x^{2}+8y+y^{2}-y^{2}=34-6x+x^{2}
Subtract y^{2} from both sides.
50-14x+x^{2}+8y=34-6x+x^{2}
Combine y^{2} and -y^{2} to get 0.
-14x+x^{2}+8y=34-6x+x^{2}-50
Subtract 50 from both sides.
-14x+x^{2}+8y=-16-6x+x^{2}
Subtract 50 from 34 to get -16.
x^{2}+8y=-16-6x+x^{2}+14x
Add 14x to both sides.
x^{2}+8y=-16+8x+x^{2}
Combine -6x and 14x to get 8x.
8y=-16+8x+x^{2}-x^{2}
Subtract x^{2} from both sides.
8y=-16+8x
Combine x^{2} and -x^{2} to get 0.
8y=8x-16
The equation is in standard form.
\frac{8y}{8}=\frac{8x-16}{8}
Divide both sides by 8.
y=\frac{8x-16}{8}
Dividing by 8 undoes the multiplication by 8.
y=x-2
Divide -16+8x by 8.
\sqrt{\left(7-x\right)^{2}+\left(1-\left(x-2\right)\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-\left(x-2\right)\right)^{2}}
Substitute x-2 for y in the equation \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}}.
\left(2x^{2}-20x+58\right)^{\frac{1}{2}}=\left(2x^{2}-20x+58\right)^{\frac{1}{2}}
Simplify. The value y=x-2 satisfies the equation.
y=x-2
Equation \sqrt{\left(7-x\right)^{2}+\left(1-y\right)^{2}}=\sqrt{\left(3-x\right)^{2}+\left(5-y\right)^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}