Evaluate
\frac{15\sqrt{23}}{16}\approx 4.496092053
Share
Copied to clipboard
\sqrt{20.25-\left(\frac{3}{16}\right)^{2}}
Calculate 4.5 to the power of 2 and get 20.25.
\sqrt{20.25-\frac{9}{256}}
Calculate \frac{3}{16} to the power of 2 and get \frac{9}{256}.
\sqrt{\frac{81}{4}-\frac{9}{256}}
Convert decimal number 20.25 to fraction \frac{2025}{100}. Reduce the fraction \frac{2025}{100} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{5184}{256}-\frac{9}{256}}
Least common multiple of 4 and 256 is 256. Convert \frac{81}{4} and \frac{9}{256} to fractions with denominator 256.
\sqrt{\frac{5184-9}{256}}
Since \frac{5184}{256} and \frac{9}{256} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5175}{256}}
Subtract 9 from 5184 to get 5175.
\frac{\sqrt{5175}}{\sqrt{256}}
Rewrite the square root of the division \sqrt{\frac{5175}{256}} as the division of square roots \frac{\sqrt{5175}}{\sqrt{256}}.
\frac{15\sqrt{23}}{\sqrt{256}}
Factor 5175=15^{2}\times 23. Rewrite the square root of the product \sqrt{15^{2}\times 23} as the product of square roots \sqrt{15^{2}}\sqrt{23}. Take the square root of 15^{2}.
\frac{15\sqrt{23}}{16}
Calculate the square root of 256 and get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}