Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3^{2}\left(\sqrt{2}\right)^{2}-\left(\frac{9}{\sqrt{5}}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\sqrt{9\left(\sqrt{2}\right)^{2}-\left(\frac{9}{\sqrt{5}}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\sqrt{9\times 2-\left(\frac{9}{\sqrt{5}}\right)^{2}}
The square of \sqrt{2} is 2.
\sqrt{18-\left(\frac{9}{\sqrt{5}}\right)^{2}}
Multiply 9 and 2 to get 18.
\sqrt{18-\left(\frac{9\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)^{2}}
Rationalize the denominator of \frac{9}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{18-\left(\frac{9\sqrt{5}}{5}\right)^{2}}
The square of \sqrt{5} is 5.
\sqrt{18-\frac{\left(9\sqrt{5}\right)^{2}}{5^{2}}}
To raise \frac{9\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{18-\frac{9^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}}
Expand \left(9\sqrt{5}\right)^{2}.
\sqrt{18-\frac{81\left(\sqrt{5}\right)^{2}}{5^{2}}}
Calculate 9 to the power of 2 and get 81.
\sqrt{18-\frac{81\times 5}{5^{2}}}
The square of \sqrt{5} is 5.
\sqrt{18-\frac{405}{5^{2}}}
Multiply 81 and 5 to get 405.
\sqrt{18-\frac{405}{25}}
Calculate 5 to the power of 2 and get 25.
\sqrt{18-\frac{81}{5}}
Reduce the fraction \frac{405}{25} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{9}{5}}
Subtract \frac{81}{5} from 18 to get \frac{9}{5}.
\frac{\sqrt{9}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{9}{5}} as the division of square roots \frac{\sqrt{9}}{\sqrt{5}}.
\frac{3}{\sqrt{5}}
Calculate the square root of 9 and get 3.
\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{5}}{5}
The square of \sqrt{5} is 5.