Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\sqrt{\frac{\frac{12}{4}+\frac{3}{4}}{\sqrt{\left(\frac{3}{5}-\frac{9}{25}\right)\sqrt{4-\frac{7}{4}}}}}
Convert 3 to fraction \frac{12}{4}.
\sqrt{\frac{\frac{12+3}{4}}{\sqrt{\left(\frac{3}{5}-\frac{9}{25}\right)\sqrt{4-\frac{7}{4}}}}}
Since \frac{12}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\left(\frac{3}{5}-\frac{9}{25}\right)\sqrt{4-\frac{7}{4}}}}}
Add 12 and 3 to get 15.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\left(\frac{15}{25}-\frac{9}{25}\right)\sqrt{4-\frac{7}{4}}}}}
Least common multiple of 5 and 25 is 25. Convert \frac{3}{5} and \frac{9}{25} to fractions with denominator 25.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{15-9}{25}\sqrt{4-\frac{7}{4}}}}}
Since \frac{15}{25} and \frac{9}{25} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6}{25}\sqrt{4-\frac{7}{4}}}}}
Subtract 9 from 15 to get 6.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6}{25}\sqrt{\frac{16}{4}-\frac{7}{4}}}}}
Convert 4 to fraction \frac{16}{4}.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6}{25}\sqrt{\frac{16-7}{4}}}}}
Since \frac{16}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6}{25}\sqrt{\frac{9}{4}}}}}
Subtract 7 from 16 to get 9.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6}{25}\times \frac{3}{2}}}}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{6\times 3}{25\times 2}}}}
Multiply \frac{6}{25} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{18}{50}}}}
Do the multiplications in the fraction \frac{6\times 3}{25\times 2}.
\sqrt{\frac{\frac{15}{4}}{\sqrt{\frac{9}{25}}}}
Reduce the fraction \frac{18}{50} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{\frac{15}{4}}{\frac{3}{5}}}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\sqrt{\frac{15}{4}\times \frac{5}{3}}
Divide \frac{15}{4} by \frac{3}{5} by multiplying \frac{15}{4} by the reciprocal of \frac{3}{5}.
\sqrt{\frac{15\times 5}{4\times 3}}
Multiply \frac{15}{4} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{75}{12}}
Do the multiplications in the fraction \frac{15\times 5}{4\times 3}.
\sqrt{\frac{25}{4}}
Reduce the fraction \frac{75}{12} to lowest terms by extracting and canceling out 3.
\frac{5}{2}
Rewrite the square root of the division \frac{25}{4} as the division of square roots \frac{\sqrt{25}}{\sqrt{4}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}