Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(2x+8\right)\left(x+5\right)}\right)^{2}=\left(36-3x\right)^{2}
Square both sides of the equation.
\left(\sqrt{2x^{2}+18x+40}\right)^{2}=\left(36-3x\right)^{2}
Use the distributive property to multiply 2x+8 by x+5 and combine like terms.
2x^{2}+18x+40=\left(36-3x\right)^{2}
Calculate \sqrt{2x^{2}+18x+40} to the power of 2 and get 2x^{2}+18x+40.
2x^{2}+18x+40=1296-216x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(36-3x\right)^{2}.
2x^{2}+18x+40-1296=-216x+9x^{2}
Subtract 1296 from both sides.
2x^{2}+18x-1256=-216x+9x^{2}
Subtract 1296 from 40 to get -1256.
2x^{2}+18x-1256+216x=9x^{2}
Add 216x to both sides.
2x^{2}+234x-1256=9x^{2}
Combine 18x and 216x to get 234x.
2x^{2}+234x-1256-9x^{2}=0
Subtract 9x^{2} from both sides.
-7x^{2}+234x-1256=0
Combine 2x^{2} and -9x^{2} to get -7x^{2}.
x=\frac{-234±\sqrt{234^{2}-4\left(-7\right)\left(-1256\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 234 for b, and -1256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-234±\sqrt{54756-4\left(-7\right)\left(-1256\right)}}{2\left(-7\right)}
Square 234.
x=\frac{-234±\sqrt{54756+28\left(-1256\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-234±\sqrt{54756-35168}}{2\left(-7\right)}
Multiply 28 times -1256.
x=\frac{-234±\sqrt{19588}}{2\left(-7\right)}
Add 54756 to -35168.
x=\frac{-234±2\sqrt{4897}}{2\left(-7\right)}
Take the square root of 19588.
x=\frac{-234±2\sqrt{4897}}{-14}
Multiply 2 times -7.
x=\frac{2\sqrt{4897}-234}{-14}
Now solve the equation x=\frac{-234±2\sqrt{4897}}{-14} when ± is plus. Add -234 to 2\sqrt{4897}.
x=\frac{117-\sqrt{4897}}{7}
Divide -234+2\sqrt{4897} by -14.
x=\frac{-2\sqrt{4897}-234}{-14}
Now solve the equation x=\frac{-234±2\sqrt{4897}}{-14} when ± is minus. Subtract 2\sqrt{4897} from -234.
x=\frac{\sqrt{4897}+117}{7}
Divide -234-2\sqrt{4897} by -14.
x=\frac{117-\sqrt{4897}}{7} x=\frac{\sqrt{4897}+117}{7}
The equation is now solved.
\sqrt{\left(2\times \frac{117-\sqrt{4897}}{7}+8\right)\left(\frac{117-\sqrt{4897}}{7}+5\right)}=36-3\times \frac{117-\sqrt{4897}}{7}
Substitute \frac{117-\sqrt{4897}}{7} for x in the equation \sqrt{\left(2x+8\right)\left(x+5\right)}=36-3x.
-\left(\frac{99}{7}-\frac{3}{7}\times 4897^{\frac{1}{2}}\right)=-\frac{99}{7}+\frac{3}{7}\times 4897^{\frac{1}{2}}
Simplify. The value x=\frac{117-\sqrt{4897}}{7} satisfies the equation.
\sqrt{\left(2\times \frac{\sqrt{4897}+117}{7}+8\right)\left(\frac{\sqrt{4897}+117}{7}+5\right)}=36-3\times \frac{\sqrt{4897}+117}{7}
Substitute \frac{\sqrt{4897}+117}{7} for x in the equation \sqrt{\left(2x+8\right)\left(x+5\right)}=36-3x.
\frac{99}{7}+\frac{3}{7}\times 4897^{\frac{1}{2}}=-\frac{99}{7}-\frac{3}{7}\times 4897^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{4897}+117}{7} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{117-\sqrt{4897}}{7}
Equation \sqrt{\left(x+5\right)\left(2x+8\right)}=36-3x has a unique solution.