Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{4\left(\sqrt{3}\right)^{2}-12\sqrt{3}+9}-\sqrt{\left(3-2\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-3\right)^{2}.
\sqrt{4\times 3-12\sqrt{3}+9}-\sqrt{\left(3-2\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\sqrt{12-12\sqrt{3}+9}-\sqrt{\left(3-2\sqrt{3}\right)^{2}}
Multiply 4 and 3 to get 12.
\sqrt{21-12\sqrt{3}}-\sqrt{\left(3-2\sqrt{3}\right)^{2}}
Add 12 and 9 to get 21.
\sqrt{21-12\sqrt{3}}-\sqrt{9-12\sqrt{3}+4\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{3}\right)^{2}.
\sqrt{21-12\sqrt{3}}-\sqrt{9-12\sqrt{3}+4\times 3}
The square of \sqrt{3} is 3.
\sqrt{21-12\sqrt{3}}-\sqrt{9-12\sqrt{3}+12}
Multiply 4 and 3 to get 12.
\sqrt{21-12\sqrt{3}}-\sqrt{21-12\sqrt{3}}
Add 9 and 12 to get 21.
0
Combine \sqrt{21-12\sqrt{3}} and -\sqrt{21-12\sqrt{3}} to get 0.