Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-2\right)^{2}.
\sqrt{4\times 3-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
The square of \sqrt{3} is 3.
\sqrt{12-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
Multiply 4 and 3 to get 12.
\sqrt{16-8\sqrt{3}+16+4\left(2\sqrt{3}-2\right)}
Add 12 and 4 to get 16.
\sqrt{32-8\sqrt{3}+4\left(2\sqrt{3}-2\right)}
Add 16 and 16 to get 32.
\sqrt{32-8\sqrt{3}+8\sqrt{3}-8}
Use the distributive property to multiply 4 by 2\sqrt{3}-2.
\sqrt{32-8}
Combine -8\sqrt{3} and 8\sqrt{3} to get 0.
\sqrt{24}
Subtract 8 from 32 to get 24.
2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.