Evaluate
2\sqrt{6}\approx 4.898979486
Share
Copied to clipboard
\sqrt{4\left(\sqrt{3}\right)^{2}-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-2\right)^{2}.
\sqrt{4\times 3-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
The square of \sqrt{3} is 3.
\sqrt{12-8\sqrt{3}+4+16+4\left(2\sqrt{3}-2\right)}
Multiply 4 and 3 to get 12.
\sqrt{16-8\sqrt{3}+16+4\left(2\sqrt{3}-2\right)}
Add 12 and 4 to get 16.
\sqrt{32-8\sqrt{3}+4\left(2\sqrt{3}-2\right)}
Add 16 and 16 to get 32.
\sqrt{32-8\sqrt{3}+8\sqrt{3}-8}
Use the distributive property to multiply 4 by 2\sqrt{3}-2.
\sqrt{32-8}
Combine -8\sqrt{3} and 8\sqrt{3} to get 0.
\sqrt{24}
Subtract 8 from 32 to get 24.
2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}