Evaluate
4\sqrt{2}\approx 5.656854249
Share
Copied to clipboard
\sqrt{4+8\sqrt{3}+4\left(\sqrt{3}\right)^{2}+\left(2-2\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2\sqrt{3}\right)^{2}.
\sqrt{4+8\sqrt{3}+4\times 3+\left(2-2\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\sqrt{4+8\sqrt{3}+12+\left(2-2\sqrt{3}\right)^{2}}
Multiply 4 and 3 to get 12.
\sqrt{16+8\sqrt{3}+\left(2-2\sqrt{3}\right)^{2}}
Add 4 and 12 to get 16.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+4\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2\sqrt{3}\right)^{2}.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+4\times 3}
The square of \sqrt{3} is 3.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+12}
Multiply 4 and 3 to get 12.
\sqrt{16+8\sqrt{3}+16-8\sqrt{3}}
Add 4 and 12 to get 16.
\sqrt{32+8\sqrt{3}-8\sqrt{3}}
Add 16 and 16 to get 32.
\sqrt{32}
Combine 8\sqrt{3} and -8\sqrt{3} to get 0.
4\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}