Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{4+8\sqrt{3}+4\left(\sqrt{3}\right)^{2}+\left(2-2\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2\sqrt{3}\right)^{2}.
\sqrt{4+8\sqrt{3}+4\times 3+\left(2-2\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\sqrt{4+8\sqrt{3}+12+\left(2-2\sqrt{3}\right)^{2}}
Multiply 4 and 3 to get 12.
\sqrt{16+8\sqrt{3}+\left(2-2\sqrt{3}\right)^{2}}
Add 4 and 12 to get 16.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+4\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2\sqrt{3}\right)^{2}.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+4\times 3}
The square of \sqrt{3} is 3.
\sqrt{16+8\sqrt{3}+4-8\sqrt{3}+12}
Multiply 4 and 3 to get 12.
\sqrt{16+8\sqrt{3}+16-8\sqrt{3}}
Add 4 and 12 to get 16.
\sqrt{32+8\sqrt{3}-8\sqrt{3}}
Add 16 and 16 to get 32.
\sqrt{32}
Combine 8\sqrt{3} and -8\sqrt{3} to get 0.
4\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.