Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(\frac{5}{2}\right)^{2}\left(\frac{1}{2}+1-\frac{3}{5}\right)-\left(\frac{3}{8}+\frac{1}{4}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Add 2 and \frac{1}{2} to get \frac{5}{2}.
\sqrt{\frac{25}{4}\left(\frac{1}{2}+1-\frac{3}{5}\right)-\left(\frac{3}{8}+\frac{1}{4}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\sqrt{\frac{25}{4}\left(\frac{3}{2}-\frac{3}{5}\right)-\left(\frac{3}{8}+\frac{1}{4}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Add \frac{1}{2} and 1 to get \frac{3}{2}.
\sqrt{\frac{25}{4}\times \frac{9}{10}-\left(\frac{3}{8}+\frac{1}{4}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Subtract \frac{3}{5} from \frac{3}{2} to get \frac{9}{10}.
\sqrt{\frac{45}{8}-\left(\frac{3}{8}+\frac{1}{4}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Multiply \frac{25}{4} and \frac{9}{10} to get \frac{45}{8}.
\sqrt{\frac{45}{8}-\left(\frac{5}{8}-\frac{3}{5}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Add \frac{3}{8} and \frac{1}{4} to get \frac{5}{8}.
\sqrt{\frac{45}{8}-\left(\frac{1}{40}+\frac{1}{10}\right)+\frac{3}{8}+\frac{1}{4}}
Subtract \frac{3}{5} from \frac{5}{8} to get \frac{1}{40}.
\sqrt{\frac{45}{8}-\frac{1}{8}+\frac{3}{8}+\frac{1}{4}}
Add \frac{1}{40} and \frac{1}{10} to get \frac{1}{8}.
\sqrt{\frac{11}{2}+\frac{3}{8}+\frac{1}{4}}
Subtract \frac{1}{8} from \frac{45}{8} to get \frac{11}{2}.
\sqrt{\frac{47}{8}+\frac{1}{4}}
Add \frac{11}{2} and \frac{3}{8} to get \frac{47}{8}.
\sqrt{\frac{49}{8}}
Add \frac{47}{8} and \frac{1}{4} to get \frac{49}{8}.
\frac{\sqrt{49}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{49}{8}} as the division of square roots \frac{\sqrt{49}}{\sqrt{8}}.
\frac{7}{\sqrt{8}}
Calculate the square root of 49 and get 7.
\frac{7}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{7\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{7}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{7\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{7\sqrt{2}}{4}
Multiply 2 and 2 to get 4.